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Abstract

Bi-criterion tours in the Steiner Traveling Salesman Problem, which visit a set of terminals

while minimizing total energy consumption and the number of left-hand turns (in right-

hand traffic), are ideal for logistics companies. These routes are fuel-efficient and safer

since they avoid stopping at junctions. Further, with the advent of electric trucks for

delivering goods, there is a need to incorporate electric vehicle energy consumption

for delivery logistics. Electric vehicles can save energy by converting kinetic energy at

wheels and recharging batteries through the process of regenerative braking. Finally,

logistic companies often have to deal with time windows while delivering goods, adding

an additional constraint to the complexity of last-mile logistics problems.

The problem of finding efficient routes that are bi-criteria Pareto-optimal in energy

consumption and the number of left turns can be modeled as a Bi-objective Steiner

Traveling Salesman. Although the solution approaches single criteria, Steiner Traveling

Salesman can be extended to bi-objective cases using scalarization, these suffer from

scalability issues and cannot deal with time windows. Further, due to regenerative braking,

energy consumption in certain sections of the road network can be negative, indicating

that energy was gained in those links. Additionally, turns as an objective depend on three

nodes, rather than most cost functions like distance and time that depend on a single

edge. These complexities cannot be handled using conventional solution approaches for

the Steiner Traveling Salesman problem.

This thesis proposes exact and heuristic solution approaches for solving the routing

problem for last-mile logistics considering the above-mentioned objectives. The problem

is modeled as a Bi-criterion asymmetric steiner traveling salesman problem with time

windows (bSTSPTW).
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Our solution approach starts with a subset of exact solutions of bSTSPTWwithout time

window constraints. Then it uses a local search with repair heuristics to enumerate new

points on the efficiency frontier which satisfy time windows. To do so, several neighborhood

structures designed explicitly for the bSTSPTW problem have been proposed. Optimal

paths between delivery points are computed using a multi-objective label setting algorithm

on a line graph, which makes counting the number of turns easier. In addition to the local

search, we also propose two new exact methods based on brute force search — Graph

layering, and Graph Concatenation.

To benchmark the results, we extend the single-objective integer program to the

multi-objective case using the scalarization technique. Results indicate that the exact

approaches work better with smaller graphs and fewer terminals, and the local search

works best with large graphs with a larger number of terminals. Empirically, local search

outperforms the integer program in most cases.

Lastly, the thesis presents an empirical case study in which the aim is to find efficient

routes for the last-mile logistics for Amazon, satisfying time windows when delivering

goods using electric vehicles in the city of Austin, Texas, USA. We start by quantifying

the energy consumption in each road link of Austin and create an underlying graph with

turns at intersections, energy consumption, and time to travel road links as attributes

for the graph. Our heuristic provides multiple route options to drivers, all of which are

Pareto-optimal.
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Chapter 1

Introduction

Two roads diverged in a yellow wood,

and sorry I could not travel both.

Robert Frost,

The Road Not Taken

Chapter Overview. This chapter presents an introduction to the thesis. Specifically,

Section 1.1 provides the motivation behind the work. Next, Section 1.2 describes the

problem statement and outlines the significant contributions of the work. Section 1.3

details the various datasets used in the thesis, and Section 1.4 introduces the notation

and definitions used in the present work. Finally, Section 1.5 provides an outline for the

rest of the thesis.

1.1 Motivation

The transportation sector is responsible for 19% global energy use and 23% of global

carbon-dioxide emissions. These numbers are expected to grow by nearly 50% by 2030

(De Cauwer et al., 2017). Electric Vehicles (EVs) offer the substantial potential to

reduce these environmental impacts. However, a limited number of studies have been on

harnessing EVs’ benefits, specifically in route design by logistic companies. In addition,

about 1.3 million commuters succumb to fatal traffic crashes every year, costing countries
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Chapter 1. Introduction

an average of 3% of their Gross Domestic Product (World Health Organization, 2004). A

significant portion of these fatal accidents directly involves the logistics sector. Recent

studies have revealed that the transportation and logistics sector has a fatal injury rate

of approximately twice the average across all industries (RTITB, 2023). Consequently,

there is an ardent need for energy-efficient and safe routing, especially within the context

of logistics companies.

Traveling Salesman Problem (TSP) is one of the most famous problems in combinatorial

optimization because of its applicability in several scenarios ranging from logistics to

circuit board design. The objective of TSP is to find the shortest tour, visiting each

node of a graph exactly once. Several TSP variants have been formulated to fit practical

scenarios. One such example is the Steiner Traveling Salesman Problem (STSP). Broadly

speaking, the STSP has two main variants—node routing and arc variant. In the node

routing variant of the problem, STSP aims to find the tours that visit a subset of nodes

(designated as terminals). However, the customer locations and depots are generally

located along the edges and not at junctions. In the arc routing version, the objective is to

enumerate the shortest tours which visit a subset of edges (also designated as terminals)

at least once and return to the origin. Thus, the arc routing version of the problem is

more significant for delivery systems.

However, the shortest tour (in terms of distance or time) is often not the only criterion

of interest. Generalized versions of STSP can include multiple objectives, leading to the

Multi-Objective Steiner Traveling Salesman Problem (MOSTSP). One such problem is to

find bi-objective tours that minimize energy consumption and left turns (in countries with

right-hand traffic), which is relevant for city logistics. The idea was motivated by United

Parcel Service (UPS) research, which pointed out how routing vehicles along paths that

minimize both distance and the number of left turns could reduce emissions, fuel usage,

and accidents. Holland et al. (2017) observed that such tours not only reduced carbon

emissions by 20,000 tons and fuel consumption by 10 million gallons but also increased

the successfully delivered packages by 350,000 per year by UPS. There have been other

extensive studies revealing that turn movements at an intersection have a significant

impact on accident rates, fuel consumption, and emissions (Wood, 2020). Choi (2010),

for instance, observed that 61% of accidents occur in left-hand turns. The infographic in

Figure 1.1 illustrates some of the benefits of using left-hand turns.

2



Chapter 1. Introduction

Figure 1.1: Infograph illustrating benefits of reducing left hand turns

(Source: https://www.bromfordlab.com/lab-diary/2019/4/9/why-do-ups-trucks-only-turn-right)

With the advent of electric vehicles, energy-efficient routing has become a significant

area of research. A wide range of road characteristics influences the energy consumption

on a road segment. In the context of last-mile delivery, factors such as road gradient, speed,

and distance traveled significantly affect energy consumption. There have been numerous

studies to estimate energy consumption in routes by modeling various road characteristics.

However, most of these studies are limited to building an energy consumption model for

range prediction using physics-based models, linear regression, and neural networks. This

poses a gap in incorporating road characteristic-based energy consumption in routing

models, especially in the context of TSP and real-life logistics.

Moreover, electric vehicles have the potential to save energy through regenerative

braking in specific road segments. Figure 1.2 illustrates this with an example. In the case

of regenerative braking, the potential energy stored in a vehicle at a height is transformed

into kinetic energy at wheels during downward road gradients. This kinetic energy can

be harnessed to recharge the vehicle’s battery. This scenario represents a rare instance

where the underlying graph of the problem exhibits negative edge weights, signifying

road segments where energy is gained rather than expended.

Though necessary, turning direction and energy consumption by incorporating road

characteristics, particularly in TSP, is rarely studied in the literature. The uniqueness of

energy consumption and turns as parameters are that while an edge’s energy consumption

depends upon two adjacent nodes, the turning direction at a junction is determined by

3
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Chapter 1. Introduction

Figure 1.2: Illustration of regenerative braking

(Source: https://www.evup.com.au/about-evup/ev-news/how-does-regenerative-braking-work)

three nodes (i.e., predecessor, current, and successor node). This adds another layer of

complexity as the cost of the shortest path for multi-objective problems is calculated

using algorithms like Martins (1984). However, such algorithms fail when turns are taken

as objectives since the edge weights depend on three nodes (due to turning direction).

Another variant of the (TSP) is the TSP with Time Windows or TSPTW. In the

TSPTW, the objective is to find a minimum-cost tour in which each city is assigned a

specific time window. This variant is more relevant in the context of last-mile delivery

logistics, as it considers the time-sensitive nature of deliveries. The TSPTW can be

further extended to incorporate (STSP), resulting in the Steiner Traveling Salesman

Problem with Time Windows (STSPTW). In this version, only the terminal nodes have

associated time windows.

1.2 Problem Statement and Contributions

In this study, we propose energy-efficient and safe routing for last-mile logistics. To do

so, we model the problem as a bi-objective version of STSPTW. We refer to this model

bi-objective Steiner Traveling Salesman Problem with Time Windows or bSTSPTW. The

model considers energy consumption and the number of turns as the two objectives. The

goal is to find all Pareto-optimal tours that visit all the terminals (at least once) and

4
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return to the depot. This approach provides drivers and logistics companies with a set of

route options from which they can select based on their preferences. The problem can be

defined as follows.

Consider a graph representing a road network and a list of delivery/customer locations

such that some or all customers have a time window representing the period within which

goods must be delivered. The goal is to find a set of Pareto-optimal tours that minimize

energy consumption and turns at intersections while delivering goods to each terminal,

adhering to the specified time windows, and returning to the depot.

Our energy consumption model is a physics-based formulation derived from Travesset-

Baro et al. (2015). This model captures both road characteristics and vehicle attributes.

The energy consumption model is given in Equation 1.1.

dE =
1

3600

[
mg(f cosϕ+ sinϕ) +

1

2

(
ρCxA

(vEV + vw)
2

3.6

)
+ (m+mf )

dv

dt

]
ds (1.1)

where dE is the energy required to drive distance ds between points i and j, m is

the vehicle mass, mf is the fictive mass of rolling inertia, f is the coefficient of rolling

resistance, ϕ is the road gradient angle, ρ is the air density, Cx is the drag coefficient of

the vehicle, A is the equivalent vehicle cross-section, vEV is the vehicle speed between

points i and j, and vw is the wind speed in the opposing direction to driving.

Note that dE can be negative when there are downward slopes, thereby causing energy

to be gained. This energy can be saved using regenerative braking with a regenerative

efficiency η. By incorporating these considerations, the bSTSPTW model enables the de-

velopment of energy-efficient and safe routing strategies tailored to the unique constraints

of electric vehicles and modern logistics systems. The major contributions of this paper

are as follows:

• Using concepts from graph theory, we propose two exact brute force methods to

solve bSTSP and bSTSPTW—Graph Concatenation and Graph layering.

• Though effective, the brute force approach fails to give satisfactory results for real-

world situations involving large graphs. Since we focus on practical applications, we

5



Chapter 1. Introduction

also introduce a new local search-based heuristic method for finding near-optimal

bi-objective tours with time windows.

• To provide a more comprehensive analysis, we also formulate the bSTSP and

bSTSPTW problem as an Integer Program (IP).

All experiments are conducted on real-world networks on Amazon delivery routes in

the city of Austin, Texas, in the United States (Merchan et al., 2022). Note that the

study assumes right-hand moving traffic. Thus, throughout the study, “turns” refer to

left turns. Similar methods can be used for left-handed traffic.

1.3 Description of Dataset

In this study, we use real-world data from the 2021 Amazon Last Mile Routing Research

Challenge Dataset (Merchan et al., 2022). The dataset contains route details such as

terminal coordinates and time windows associated with these terminals for historical

routes used by Amazon drivers for last-mile delivery in six cities in the United States.

With the coordinates of terminals extracted from this dataset, an underlying road network

graph is created using OpenStreetMaps (OpenStreetMap contributors, 2023). Road link

lengths and velocities are obtained from OpenStreetMaps, followed by computing turn

direction at intersections. To do so, the bearing angle is computed for every pair of links

at an intersection. For two points A and B with respective latitude-longitude coordinate

(ϕ1, λ1) and (ϕ2, λ2), the bearing angle can be computed using Equation 1.2, where ϕ1

and ϕ2 are the latitudes, ∆λ is the difference in longitudes (λ2 − λ1), With this angle, we

assign each turn as “left” or “right”.

bearing = tan−1

(
sin(∆λ) · cos(ϕ2)

cos(ϕ1) · sin(ϕ2)− sin(ϕ1) · cos(ϕ2) · cos(∆λ)

)
(1.2)

To determine road gradients, we use the United States Geological Survey (USGS)

Elevation Point Query Service (EPQS) (USGS, 2023). Subsequently, we calculate the

time spent in each link as the length of the link divided by the velocity in that link.

These data enable the characterization of the network to simulate real-life environments

6



Chapter 1. Introduction

to a considerable extent. Figure 1.3 summarizes some vehicular parameters. We use the

parameters for lion-8 all-electric trucks for our analysis. The reason for choosing lion-8

was that Amazon plans to procure 2500 lion-8 trucks for logistic purposes (Electrive,

2021).

All-Electric Class 8 
Straight Truck

Technical 
Speci!cations

Multiple range 
o"erings available

thelionelectric.com

WEIGHT & DIMENSIONS

Cabin Length - BBC 79 in.

Cabin Height 107 in.

Wheelbase 195 in.

Gross Vehicle 
Weight Rating (GVWR)

Up to 60,000 lb 

ELECTRIC POWERTRAIN

Top Speed 65 mph

Maximum Power 350 kW • 470 HP

Maximum Torque 3,400 Nm • 2,500 ft-lb

Range Up to 170 miles

Ba!ery Capacity Up to 252 kWh

Motor & Inve"er SUMO HD 800 VDC 
9 phases  Dana TM4

Transmission Direct drive  
No transmission

Level III - Charging Time Minimum 2 hours

CHASSIS
Front Axle Up to 20,000 lb

Rear Axle Up to 40,000 lb

Suspension Air suspension • Hendrickson

Braking Air disc brakes • Bendix

All-Electric Class 8 
Straight Truck

Technical 
Speci!cations

Multiple range 
o"erings available

thelionelectric.com

WEIGHT & DIMENSIONS

Cabin Length - BBC 79 in.

Cabin Height 107 in.

Wheelbase 195 in.

Gross Vehicle 
Weight Rating (GVWR)

Up to 60,000 lb 

ELECTRIC POWERTRAIN

Top Speed 65 mph

Maximum Power 350 kW • 470 HP

Maximum Torque 3,400 Nm • 2,500 ft-lb

Range Up to 170 miles

Ba!ery Capacity Up to 252 kWh

Motor & Inve"er SUMO HD 800 VDC 
9 phases  Dana TM4

Transmission Direct drive  
No transmission

Level III - Charging Time Minimum 2 hours

CHASSIS
Front Axle Up to 20,000 lb

Rear Axle Up to 40,000 lb

Suspension Air suspension • Hendrickson

Braking Air disc brakes • Bendix

Lion is building today’s ultimate electric  
urban truck. 

Designed and purpose-built to deliver goods, our 
zero-emission class 8 urban truck is e!cient and 
sustainable, o"ering a powe#ul combination of 
unparalleled pe#ormance and exceptional savings.

Each $eet vehicle lightens the global GHG load by 
up to 100 tons per year.

The LionExperience:
• Grant writing and ability to leverage fundings
• Charging infrastructure design 

and project management
• Complete onboarding trainings 
• Purpose-designed EV telematic system

Make your next move 
a bright one.  

Purpose-built  
to give you  
all the clean power 
you need. 

Savings
Electric VS. Diesel

80%

60%

ENERGY COST 
REDUCTION

MAINTENANCE 
COST REDUCTION

 1 ZERO-EMISSION SOLUTION

2 PROVEN SAFETY RECORDS

3 LOWEST TOTAL COST OF OWNERSHIP

4 REDUCTION OF MAINTENANCE DOWN TIME

5 BEST-IN-CLASS DRIVING EXPERIENCE

6 NO NOISE POLLUTION

Lion8-2022-02-EN/US

Figure 1.3: Technical specifications of lion-8 electric truck

(Source: https://pages.thelionelectric.com/lion8/)

Figure 1.4 and 1.5 illustrate the energy and slope distribution for all six cities. It is

worth noting that all road gradients with a downward slope do not contribute to energy

capture. This is because a significant gradient is required to have energy capture through

regenerative braking (see equation 1.1). In the figures, negative energy indicates energy is

gained and conserved through regenerative braking, while positive energy signifies energy

is lost. A regenerative efficiency of 70% was assumed.

Figure 1.6 illustrates the distribution of energies on the Austin network. Green links

signify energy could be saved through regenerative braking on these links. Furthermore,

Figure 1.7 presents the location of terminals for one of the routes in the dataset.
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Figure 1.4: Slope and energy distribution for Chicago, Seattle, and Los Angeles
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Figure 1.5: Slope and energy distribution for Austin, Rhode Island, and Boston
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Figure 1.6: Distribution of energies on the Austin network

(energy could be saved through regenerative braking in green links.)

Figure 1.7: Location of terminals

(black dots represent terminals, the terminal at the right corner represents the depot)
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Figure 1.8: Line graph illustration

1.4 Definitions and Notations

This section introduces the terminology used in the present work. The notations are

summarized in Table 1.1.

Let G = (V,E,ER) denote a directed graph where V and E are the set of nodes and

edges. ER ⊆ E represents the set of terminal edges or terminals that are required to be

visited. Let the cardinality of ER be nR. Let L = (V ′, E ′, V ′
R) denote the line graph of G

in which the edges (nodes) in G are nodes (edges) in L.

Line Graph: As described earlier, bi-criteria shortest-path algorithms like Martins

(1984) can not be directly applicable in our case as one of the cost attributes (number of

turns) depends on three nodes. To overcome this issue, we solve the problem on a line

graph. See Figure 1.8 for illustration. The Subfigure 1.8b is the line graph for Subfigure

1.8a. An edge e = (v1, v2) of the original graph is labeled as a node (v1, v2) in the line

graph. Similarly, a node v in the original graph is labeled as an edge v in the line graph.

Consider the following example w.r.t Figure 1.8. While traveling along the path

(1 − 2 − 3) in Subfigure 1.8a, the turning direction at node 2 depends on the edges

(1, 2) and (2, 3). However, in the line graph L in Subfigure 1.8b, it depends on the two

corresponding nodes labeled (1, 2) and (2, 3). However, the energy attribute of the edge

connecting these two nodes (labeled as 2 in Subfigure 1.8b) now depends only on one

node. Hence to define the energy attribute in the line graph, we make the following

11



Chapter 1. Introduction

assumption: The energy attribute for edges of the line graph is set to half the sum of

energy consumption in the corresponding edges in the original graph. For example, for

edge labeled 2 (connecting nodes (1, 2) and (2, 3)) in Subfigure 1.8b, de =
1
2
∗ (de1 + de2),

where e1 and e2 are the edges (1,2) and (2,3) in Subfigure 1.8a. In other words, we

assume that the delivery locations are at the mid-points of the edges. This assumption is

reasonable since customer locations and depots are generally located along the edges and

not at junctions.

Note that since our focus is on real-world networks, which are often directed, there

can be more edges in the line graph than nodes in the original graph. We now present a

few definitions required throughout the thesis.

A path p is a set of nodes visited in a particular order. A tour is a closed path visiting

each terminal of G. Let X be the set of all feasible tours. For a tour x ∈ X, its cost z(x)

is defined as a two-dimensional vector [z1(x), z2(x)], where z1(x) and z2(x) are the cost

attributes for the bi-criteria case. Given tours x1, x2 ∈ X, x2 is said to be dominated by

x1, denoted by z(x1) ⪯ z(x2), iff z1(x1) ≤ z1(x2) and z2(x1) ≤ z2(x2). In other words, x1

dominates x2 iff x1 is better than x2 in all attributes. A tour x1 is said to be optimal

if no solution exists x2 ∈ X such that x1 is dominated by x2. Let Ê denote the Pareto

optimal set containing all the optimal solutions. We say a set S is non-dominated if no

element in S is dominated by another element of S. A Maximal Non-Dominated Subset

(MNDS) of a set S, denoted by MNDS(S), is its largest non-dominated subset.

A Decision Space comprises all candidate solutions to a multi-objective problem.

An objective function maps the decision space into a Objective Space. In our case, the

decision space includes all tours, and the objective space contains the corresponding

energy consumption and turn count for each tour in the decision space. A Pareto-front

or a efficiency frontier refers to the image of a Pareto optimal set on the objective space.

Figure 1.9 (Maier et al., 2019) explains decision space, objective space, non-dominated

solutions, and Pareto front when both objectives are minimized.

bSTSP and bSTSPTW formulation: Given a graph L = (V ′, E ′, V ′
R) , the

objective of the bSTSP is to find a set of Pareto optimal tours that return to origin after

visiting all terminal nodes in V ′
R (at least once). To do so, the traveler starts with nR − 1

units of a commodity and drops off exactly one unit at each terminal node (no commodity

12



Chapter 1. Introduction

Figure 1.9: Mapping of a decision space onto an objective space

The non-dominated solutions are shown in black border circles, and the Pareto front is

shown in red. (Maier et al., 2019)

is delivered at the source node). Note that there is no restriction on the number of times

a node is traversed. If each terminal v ∈ VR has a time window [Rv, Dv] associated with

it, then the formulation is called to be bSTSPTW

The following additional notations are required for our analysis. For each edge e ∈
E ′ , its cost ce is represented as a two-dimensional vector [de, te] representing energy

consumption and turn count for e in the line graph L. Let δ+(v) (δ−(v)) denote the set

of edges in E ′ whose tail (head) node is v . For each edge e ∈ E, let fe represent the

amount of the commodity passing through the edge e.

The above notations (along with a few extra notations that will be defined in subsequent

chapters) have been summarized in Table 1.1.
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Table 1.1: Notations and abbreviations

Notation Description

G = (V,E,ER) Original graph with V vertices, E edges, and ER terminals

L = (V ′, E ′, V ′
R) line graph with V ′ vertices, V ′

R terminals and E ′ edges

X Set of feasible tours of bSTSP

S Any generic set

E Pareto optimal set for bSTSPTW

Ê Non-dominated set which approximates E

X̂ Faesible set for bSTSP containig promising tours for bSTSPTW

P Set of paths

[Rv, Dv] Time window at node v

δ+(v) Set of edges in E ′ whose tail node is v

δ−(v) Set of edges in E ′ whose head node is v

i General indices

nR Cardinality of set ER (and V ′
R )

v, vi Any vertex

vo Source node (depot)

e Any edge

p, p′, p̂, p̃, pi Path ∈ P

z(p) = [z1(p), z2(p)] Cost of the path p

de Energy parameter of edge e ∈ E ′

te Turn of an edge e ∈E ′

fe Amount of commodities passing through the edge e ∈E ′

s, sv Time (Time required to reach node v from depot

α, β Scalerization parameters for IP

τ Maximum run time for an algorithm

k Expected number of Pareto-optimal solutions

δ Phase budget (a heuristic parameter used in local search)
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1.5 Thesis Outline

The remainder of the thesis is structured as follows. Chapter 2 provides a brief literature

review of TSP and related problems. Next, Chapter 3 introduces the exact methods and

integer program formulations for bSTSP and bSTSPTW. A new local search method

for bSTSPTW is proposed in Chapter 4. Chapter 5 compares the proposed techniques’

performance on different real-world network instances. Finally, Chapter 6 summarizes

our findings and suggests potential extensions to the current research.

Note: Throughout the thesis, we also use such Notes to present extra information

that requires special attention.

N
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Chapter 2

A Brief History of Various Variants

of Traveling Salesman Problem

Those that fail to learn from history

are doomed to repeat it.

Winston Churchill

Chapter Overview. This chapter provides a brief literature review on TSP and its

related problems. In particular, Section 2.1 encapsulates the original TSP problem.

Within this section, Subsection 2.1.1 explores Integer Program-based methods, while

Subsection 2.1.2 discusses the use of heuristics. Section 2.2 explores different variants of

the TSP problem. Subsection 2.2.1 addresses the asymmetric version of TSP, Subsection

2.2.2 explores the multiobjective version, Subsection 2.2.3 discusses the TSP problem

incorporating time windows, and Subsection 2.2.4 examines the Steiner version.

Note that the TSP is a nearly century-old problem that has been extended to several

variants and remains one of the most challenging problems in combinatorial optimization.

This chapter only covers of few of its variants, which are essential in the present context.
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Chapter 2. A Brief History of Various Variants of Traveling Salesman Problem

2.1 Traveling Salesman Problem (TSP) – The vanilla

version

Traveling Salesman Problem (TSP) seeks to find the shortest tour that visits all nodes

of a given graph and returns to the origin. This is a specific TSP variant called Single

Objective Symmetric Traveling Salesman Problem (SOSTSP). As the name suggests,

SOTSP aims to find tours based on a single objective (typically distance or time). The

graph in this problem (unless stated otherwise) is assumed to be symmetric, where the

cost to travel from node i to node j, denoted by cij, is the same as that of cji. This

makes sense when the cost matrix has objectives like distance. However, when there are

objectives like time, the time to travel in different directions on the same links may vary,

necessitating an asymmetric version of the TSP. In the following sections, we will discuss

some popular methods for solving the symmetric and asymmetric TSP (ATSP).

2.1.1 Integer Programs

The earliest formulations of TSP were modeled as Integer Linear Programs (ILPs), with

the Dantzig, Fulkerson, and Johnson (DFJ) formulation being among the first (Dantzig

et al., 1954). This formulation introduces a decision variable xij for each edge, representing

whether the edge (i, j) is part of the optimal tour. The edge (i, j) cost is denoted by cij.

The objective function aims to minimize the total cost of the tour. While the constraints

(2.20) and (2.21) ensure that each node should be visited exactly once, constraint (2.4)

eliminates subtours. Subtours are defined as closed paths that visit only a subset of

nodes.
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TSP DFJ Formulation

minimize
n∑

i=1

n∑
j=1,j ̸=i

cijxij (2.1)

subject to
n∑

j=1,j ̸=i

xij = 1, ∀i = 1, . . . , n (2.2)

n∑
i=1,i ̸=j

xij = 1, ∀j = 1, . . . , n (2.3)

∑
i∈S

∑
j∈S

xij ≤ |S| − 1, ∀S ⊆ {1, . . . , n}, 2 ≤ |S| ≤ n− 1 (2.4)

xij ∈ {0, 1}, ∀i, j = 1, . . . , n, i ̸= j (2.5)

Letchford et al. (2013) explained that the above formulation has an exponential number

of subtour elimination constraints. Consequently, even for small values of n, solving this

formulation using modern solvers is impractical. A notable contribution in the field is by

Laporte (1992), in which the authors attempted to solve the problem by relaxing some

constraints.

Another famous ILP formulation for the standard TSP is the Miller, Tucker, and

Zemlin (MTZ) formulation by Desrochers and Laporte (1991). The MTZ formulation

addresses the exponential constraint issue present in the DFJ formulation by introducing

additional decision variables. It modifies the subtour elimination constraints by adding

decision variables ui for each node, representing the node’s position within the tour. The

modified subtour elimination constraint is in (2.10).
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TSP MTZ Formulation

minimize
n∑

i=1

n∑
j=1,j ̸=i

cijxij (2.6)

subject to
n∑

j=1,j ̸=i

xij = 1, ∀i = 1, . . . , n (2.7)

n∑
i=1,i ̸=j

xij = 1, ∀j = 1, . . . , n (2.8)

ui − uj + nxij ≤ n− 1, ∀i, j = 2, . . . , n, i ̸= j (2.9)

xij ∈ {0, 1}, ∀i, j = 1, . . . , n, i ̸= j (2.10)

ui ∈ {1, . . . , n− 1}, ∀i = 2, . . . , n (2.11)

The MTZ formulation has O(n2) variables and O(n2) constraints. Unfortunately, the

relaxation of this formulation to its Linear Program (LP) results in very weak bounds,

even weaker than those of the DFJ formulation (Letchford et al., 2013).

To address this issue, Gavish and Graves (1978) proposed a Single Commodity Flow

(SCF) formulation. The LP relaxed bound of SCF formulation is situated between

the MTZ and DFJ formulations (Padberg and Sung, 1991). In the SCF, the salesman

begins at the origin with n− 1 commodities and drops off one commodity at each node

visited, effectively depleting all commodities upon returning to the origin. This constraint

inherently acts as a sub-tour elimination constraint by imposing an order on the nodes

visited. To model this, a decision variable fij is assigned to each edge, representing the

number of commodities flowing through edge (i, j). The SCF formulation consists of

O(n2) variables and O(n) constraints.
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TSP SCF Formulation

minimize
n∑

i=1

n∑
j=1,j ̸=i

cijxij (2.12)

subject to
n∑

j=1,j ̸=i

xij = 1, ∀i = 1, . . . , n (2.13)

n∑
i=1,i ̸=j

xij = 1, ∀j = 1, . . . , n (2.14)

n∑
j=1,j ̸=i

fij −
n∑

j=2,j ̸=i

fji = 1, ∀i = 2, . . . , n (2.15)

fij ≤ (n− 1)xij, ∀i, j = 1, . . . , n, i ̸= j (2.16)

xij ∈ {0, 1}, ∀i, j = 1, . . . , n, i ̸= j (2.17)

fij ≥ 0, ∀i, j = 1, . . . , n, i ̸= j (2.18)

In addition to the three prominent ILP formulations for (TSP) discussed earlier, several

alternative ILP formulations also exist in the literature. Gouveia and Voß (1995) offers an

exhaustive survey that delves into the various formulations proposed for addressing TSP.

2.1.2 Heuristic Methods

TSP being a NP-hard, solving them as ILP is generally time-consuming (Laporte, 1992).

Consequently, many heuristic approaches for solving TSP have been proposed in the

literature. In the present context, three main categories are important: Greedy methods,

Insertion heuristics, and Node-exchange methods. (Laporte, 1992) showed that these

methods generally present a trade-off as while some guarantee specific bounds on worst-

case performance or others are known to empirically known to perform well. The most

simplistic heuristic is the nearest-neighbor search (Karkory and Abudalmola, 2013), which

starts with the origin, finds the nearest node, locates the nearest node to the previous

node, and continues iteratively. The nearest-neighbor search falls under the category

of greedy heuristics. Additionally, various insertion heuristics have been proposed for

TSP. Hassin and Keinan (2008) provides a review of the insertion heuristics for TSP.

These methods iteratively insert unvisited cities into the current tour at the position
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that minimizes the increase in tour length. Christofides’ algorithm (Christofides et al.,

1981) is an approximation algorithm that guarantees a solution within 3/2 times the

optimal value for the symmetric TSP. The authors create a minimum spanning tree of

the underlying graph, find the minimum-weight perfect matching, and finally form a tour

for TSP. Several other minimum-spanning tree-based heuristics have been proposed for

TSP. Held and Karp (1970) offers a review of such methods.

Numerous node-exchange-based methods, or swapping, are also popular for heuristically

solving TSP. These swaps are called 2-opt if only two pairs of nodes can be swapped

(Croes, 1958). Extensions of this method include 3-opt (Bock, 1958), 4-opt (Blazinskas

and Misevicius, 2011), and k-opt (Potvin et al., 1989). In general, lower-order swaps are

faster, while larger-order swaps cover broader areas of the search space (Lin, 1973). The

Lin-Kernighan (LK) heuristic (Lin and Kernighan, 1973) addresses this effectively by

iteratively improving a tour through a sequence of edge swaps (2-opt, 3-opt, and so on)

and accepting the best improving move. Through several implementation improvements,

the LK heuristic was further enhanced by Helsgaun (2000). Other heuristics for solving

TSP include Tabu search (Basu, 2012), Genetic algorithms (Basu, 2012), Simulated

annealing (Skiscim and Golden, 1983), and Ant colony optimization (Stützle et al., 1999).

2.2 Variants of TSP

2.2.1 Asymmetric TSP (ATSP)

Before proceeding to the ATSP problem, defining the Assignment Problem in the context

of ATSP (Burkard, 1979) is essential. In the Assignment Problem or AP, we model a linear

program that seeks to determine a tour or a set of subtours. Note that AP, combined with

subtour elimination constraints, gives the solution to TSP. The ILP formulations designed

for symmetric TSP also apply to ATSP. Öncan et al. (2009) carried out a comprehensive

comparison of 24 such formulations, providing valuable insights into their performance in

real-world instances.
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Assignemnt Problem (AP)

minimize
n∑

i=1

n∑
j=1,j ̸=i

cijxij (2.19)

subject to
n∑

j=1,j ̸=i

xij = 1, ∀i = 1, . . . , n (2.20)

n∑
i=1,i ̸=j

xij = 1, ∀j = 1, . . . , n (2.21)

xij ∈ {0, 1}, ∀i, j = 1, . . . , n, i ̸= j (2.22)

Johnson et al. (2007) showed that the heuristics designed for symmetric TSP generally

fail or are ineffective for ATSP. However, promising results can be expected for ATSP

when the gap between the AP bound and the optimal tour length is small. The Repeated

Assignment heuristic is known to have the best bound on worst-case performance (Frieze

et al., 1982). This heuristic builds on the Christofides heuristic for symmetric TSP.

However, while the bound for the Christofides heuristic for symmetric TSP is 3/2, it can

be shown that the bound for the Repeated Assignment heuristic is log2N (Frieze et al.,

1982). Another popular heuristic for ATSP is Zhang’s heuristic (Zhang, 1993), which

uses a depth-first search to explore solutions and solve the assignment problem-based

branch and bound for the ATSP.

In the case of local search-based heuristics, the 2-opt sequence does not yield effective

results for ATSP, as it inverts parts of a tour (Matsushita et al., 2011). 3-opt-based

methods, on the other hand, work effectively (Sierksma, 1994). However, in contrast

to all possible swaps, only one swap that does not invert subpaths is selected (Frieze

et al., 1982). The Kanellakis-Papadimitriou (KP) heuristic builds on the LK heuristic for

symmetric TSP (Kanellakis and Papadimitriou, 1980). It employs only odd k-opt swaps

and uses a depth-first search to find the best k. Furthermore, a double-bridge type swap

is implemented for diversification. Other popular heuristics for ATSP include Helsgaun’s

Heuristic (Helsgaun, 2000), which transforms an ATSP instance into a symmetric TSP

instance, Iterated 3-opt that performs 10n iterations for n cities, and Iterated KP

(Cirasella et al., 2001), which introduces a variable depth search in the k-opt phase.
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2.2.2 Multi Objective Traveling Salesman Problem (MOSTSP)

Tours with the least cost or distance are often impractical in real-world applications

(Holland et al., 2017). However, given that the SOTSP is an NP-complete problem,

incorporating multiple objectives in the MOTSP variant introduces an additional layer of

complexity. Consequently, the most general approach for solving the MOTSP involves

employing heuristics. These methods rely on multi-objective metaheuristics (MOMHs)

based on evolutionary algorithms or local search. A comparison of the performance of

evolutionary algorithms for MOTSP is presented in Qamar et al. (2018). Angel et al.

(2004) introduced a ds-2opt (dyna-search) neighborhood designed explicitly for MOTSP,

which explores the non-dominated neighborhood for a tour. A dynamic program was

utilized to calculate all independent 2-opt moves comprising the neighborhood. While

this method yielded satisfactory results, it proved to be computationally expensive (Lust

and Teghem, 2010a).

Paquete et al. (2004) proposed a Pareto local search method akin to Angel et al. (2004),

with the distinction that the neighborhood in Paquete et al. (2004) did not include any

tour generated from a dominated solution, thus limiting the neighborhood. Paquete and

Stützle (2003) presented a new two-phase local search and demonstrated superior results

compared to conventional algorithms. In the first phase, single-criteria versions of the

problem were explored, while the second phase investigated the multi-objective version

using weights on the objectives. Gupta and Warburton (1987) employed a scalarization

technique that assigned weights to different objectives using the Tchebycheff function

for scalarization. Lust and Teghem (2010b) expanded upon this direction, proposing a

two-phase Pareto local search. In the first phase, the convex subset of efficient solutions

was computed using weights on the objectives, while in the second phase, the remaining

efficient solutions were proposed using swaps.

Li (2005) introduced an interesting new concept of ”attraction” for each objective,

which consisted of sets comprising solutions for individual objectives. Different parts of

the attraction set were combined based on a local search, which calculated the overlap of

these paths concerning a new tour.
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2.2.3 Traveling Salesman Problem with Time Windows (TSPTW)

The TSPTW (Traveling Salesman Problem with Time Windows) is an extension of the

classic TSP that integrates time constraints into the problem (De Schreye, 1999). In

this version, each node has a specific time window within which it must be visited. The

objective is to find a TSP tour that adheres to the time windows for each node. This

additional layer of complexity makes the problem more challenging to solve. Nonetheless,

the TSPTW is commonly utilized in real-world applications, particularly in modern

logistics.

Several approaches have been proposed to solve the TSPTW. One popular method

involves applying penalties to nodes where time windows are infeasible (Da Silva and

Urrutia, 2010). Ohlmann (2007) employed a simulated annealing procedure with a

variable penalty approach, while Helsgaun (2017) extended the Lin-Kernighan (LK)

heuristic for symmetric TSP by using penalties separately rather than adding them to

the objective. Numerous studies (e.g., Li (2008); Tsitsiklis (1992); Kara et al. (2013))

have sought to minimize travel times as an objective, which is a comparatively more

straightforward method than cases where the objective differs from time. Li (2008)

utilized a dynamic programming-based approach to solving the TSPTW, while urgen

Antes and Derigs (1995) employed a two-phase method. Initial solutions without time

windows were generated using parallel nearest-neighborhood searches in the first phase.

The authors calculated the earliest and latest arrival times at a node to address the time

windows. A local search method was employed in the second phase to improve these tours.

Solomon (1987) proposed a construction heuristic for the TSPTW, using a time-oriented

nearest-neighbor search, and further applied insertions, deletions, and exchanges in an

improvement heuristic to obtain better solutions. Cheng and Mao (2007) utilized an

ant colony-based optimization for solving the TSPTW. Russell (1977) compared various

exchange-based local search heuristics (such as 2-opt and 3-opt) in the context of the

TSPTW and proposed a new variant of the 2-opt for the TSPTW that selected nodes

without violating time window feasibility.
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2.2.4 Steiner Traveling Salesman Problem (STSP)

As discussed in Chapter 1, finding optimal tours that pass through a subset of nodes (as

opposed to visiting all the nodes) of the graph makes the solution particularly useful in

the context of logistics (Zhang et al., 2015) and routing (Letchford et al., 2013). Such

problems are popularly known as Steiner Traveling Salesman Problem (STSP).

A single objective STSP instance can be transformed into a TSP problem by computing

the shortest path between each pair of terminals and generating a complete graph (Álvarez-

Miranda and Sinnl, 2019). The nodes of the complete graph represent the terminals,

and the edges are assigned costs equivalent to the shortest paths between the terminals.

By solving the TSP on this complete graph, a solution for the corresponding STSP can

be obtained. However, computation of a complete graph can sometimes be expensive

(Letchford et al., 2013). As a result, the latest trend in the field is to directly solve the

STSP problem with heuristics and IP formulations. For example, Letchford et al. (2013)

proposed a single commodity flow based IP formulation, and Interian and Ribeiro (2017)

proposed a Greedy Randomized Adopted Search Procedure (GRASP) based on 2-opt

moves for symmetric STSP. The common underlying motivation behind all these methods

is that the computation of a complete graph is time-intensive. Álvarez-Miranda and Sinnl

(2019) compared the techniques proposed by Letchford et al. (2013) and Interian and

Ribeiro (2017) to those that utilize a complete graph and then solve using state-of-the-art

TSP solvers like CONCORDE (Applegate et al., 2003). The authors concluded that, in

most practical cases, the latter approach yields faster results.

In recent years, a few variants of the problem have been explored—edges having

correlated stochastic costs (Letchford and Nasiri, 2015), and accommodating online and

real-time edge blockages (Zhang et al., 2015). However, literature on this particular

variant is relatively sparse.

Table 2.1 highlights the key features of some relevant studies and how they differ from

the present work.
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Paper Problem Obj. Type Solution Approach

Dantzig et al.

(1954)
TSP Single Asymmetric Heuristic Interger Program

Desrochers and

Laporte (1991)
TSP Single Asymmetric Heuristic Interger Program

Gavish and

Graves (1978)
TSP Single Asymmetric Heuristic Interger Program

Lust and Teghem

(2010b)
TSP Multi Symmetric Heuristic Pareto local search

Yan et al. (2003) TSP Multi Asymmetric Heuristic

Evolutionary Multi-

objective Optimiza-

tion

Agrawal et al.

(2021)
TSP Multi Asymmetric Heuristic

Hybrid of local

search and genetic

algorithm

Lin and

Kernighan (1973)
TSP Single Symmetric Heuristic Local search

Kanellakis and

Papadimitriou

(1980)

TSP Single Asymmetric Heuristic Local search

Gabrel et al.

(2020)
STSP Single Symmetric

Exact &

Heuristic

Branch-and-Cut &

Branch-and-Price

Letchford et al.

(2013)
STSP Single Asymmetric Exact

SCF based IP for-

mulation

Interian and

Ribeiro (2017)
STSP Single Symmetric Heuristic

2-opt based

GRASP

Álvarez-Miranda

and Sinnl (2019)
STSP Single Asymmetric Exact

Complete graph

and TSP solvers

(CONCORDE)

Zhang et al.

(2015)
STSP Single Asymmetric Heuristic

Minimum spanning

trees

Li (2008) TSPTW Single Asymmetric Exact
Dynamic program-

ming

Solomon (1987) TSPTW Single Symmetric Heuristic Local search

Cheng and Mao

(2007)
TSPTW Single Asymmetric Heuristic

Ant colony opti-

mization

Russell (1977) TSPTW Single Symmetric Heuristic

Exchange-based lo-

cal search heuris-

tics

Helsgaun (2017) TSPTW Single Symmetric Heuristic Local search

Ohlmann (2007) TSPTW Single Symmetric Heuristic
Simulated anneal-

ing

This work STSPTW Multi Asymmetric
Exact &

Heuristic

IP and Local

search

Table 2.1: Research gaps
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Chapter 3

Exact Solution Methods

The test of a good algorithm is not

whether it’s clever, but whether it

works.

Brian Kernighan

Chapter Overview. This chapter presents exact methods for solving both the bSTSP

and bSTSPTW. Specifically, Section 3.1 presents integer program formulations for bSTSP

and bSTSPTW. Next, Section 3.2 introduces two exact brute force methods for bSTSP —

Graph layering and Graph Concatenation. Finally, Section 3.3 outlines the limitations of

the exact methods and sets the context for the next chapter.

Note: The primary contributions of this chapter are the two brute force methods for

bSTSPTW and bSTSP, and the IP formulation for bSTSPTW.

N

3.1 Integer Program for bSTSP and bSTSPTW

Recall that the problem bSTSP involves finding all Pareto-optimal tours for the bi-

objective Steiner traveling salesman problem. Previously, Letchford et al. (2013) proposed

an IP formulation for solving STSP. We extend it to the bi-objective case using the

scalarization technique discussed in Dial (1996). The decision variable is xe, which is
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equal to one if the edge e is part of the optimal tour, else 0.

bSTSP IP Formulation

min
∑
e∈E′

(αde + βte)xe (3.1)

s.t.
∑

e∈δ+(v)

xe ≥ 1 ∀ v ∈ V ′
R (3.2)

∑
e∈δ+(v)

xe =
∑

e∈δ−(v)

xe ∀ v ∈ V ′ (3.3)

∑
e∈δ−(v)

fe −
∑

e∈δ+(v)

fe = 1 ∀ v ∈ V ′
R \ {vo} (3.4)

∑
e∈δ−(v)

fe −
∑

e∈δ+(v)

fe = 0 ∀ v ∈ V ′ \ V ′
R (3.5)

0 ≤ fe ≤ (nR − 1)xe ∀ e ∈ E ′ (3.6)

xe ∈ {0, 1} ∀ e ∈ E ′ (3.7)

The objective function (3.1) minimizes the weighted sum of the two parameters for

each edge, where α and β indicate the weights of the two parameters. Constraint (3.2)

stipulates that the traveler departs from each terminal at least once. Constraint (3.3)

imposes that the traveler must depart the node they visit. Constraints (3.4) and (3.5)

ensure that while exactly one unit of the commodity is delivered at each terminal, no

deliveries are made at non-terminals. Constraint (3.6) ensures that commodities only

pass through an edge that is a part of the optimal tour. Boolean constraints on the

decision variables are imposed in Constraint (3.7).

While bSTSP without time windows may be useful, it often falls short in practical

applications for delivery companies. Therefore, to effectively handle time windows, we

build upon the works of Dash et al. (2012). For each node v ∈ VR, consider following

additional parameters:

• Rv: Earliest arrival time, i.e., delivery cannot be made before this.

• Dv: Latest departure time, i.e., delivery must be made before this
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Further, let θe represent travel time on an edge e. The IP for bSTSPTW can thus be

formulated as follows. Constraint (3.8) – (3.13) are same as before. Constraint (3.14)

guarantees that arrival times at nodes increase along any path within a tour, while

Constraint (3.15) ensures that the time of arrival at a terminal v adheres to the time

window (Rv, Dv). The decision variable sv refers to the arrival time at node v.

bSTSPTW IP Formulation

min
∑
e∈E′

(αde + βte)xe (3.8)

s.t.
∑

e∈δ+(v)

xe ≥ 1 ∀ v ∈ V ′
R (3.9)

∑
e∈δ+(v)

xe =
∑

e∈δ−(v)

xe ∀ v ∈ V ′ (3.10)

∑
e∈δ−(v)

fe −
∑

e∈δ+(v)

fe = 1 ∀ v ∈ V ′
R \ {vo} (3.11)

∑
e∈δ−(v)

fe −
∑

e∈δ+(v)

fe = 0 ∀ v ∈ V ′ \ V ′
R (3.12)

0 ≤ fe ≤ (nR − 1)xe ∀ e ∈ E ′ (3.13)

svi + θe − (1− xe)Me ≤ svj ∀ e = (vi, vj) ∈ E ′ (3.14)

Rv ≤ sv ≤ Dv ∀ v ∈ VR (3.15)

xe ∈ {0, 1} ∀ e ∈ E ′ (3.16)

Note that theoretically, though the efficiency frontier given by an IP is always convex,

studies (Cĺımaco and Pascoal (2016)) have shown that the actual efficiency frontier

may/may not be convex. Thus, the current formulation of the IP only provides the

convex subset of the Pareto optimal frontier.

Let the solution to the IP for any value of α and β be given by IntProg(α, β, time)

where time refers to the amount of time for which the IP is allowed to run. For exact

solutions, we set time =∞. For a configuration of α and β, let the output of IntProg

be p, d, and t, where p represents the optimal path constructed from the set of edges e s.t.

xe = 1, and d and t are the cost of the parameters (energy consumption and the number
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of turns, respectively) of the optimal path.

To enumerate the points on the efficiency frontier, we first find the extreme points

by setting (α, β) equal to (0, 1) and (1, 0). These two cases correspond to the SOSTSP,

where we optimize only one objective (energy or the number of turns). For all subsequent

iterations, we use the scalarization approach described below.

Setting the ratio of the weights (i.e., α
β
) as the slope of the line connecting the extreme

points, we employ a recursive algorithm as delineated by Dial (1996). The algorithm

is depicted in Algorithm 1 and will be referred to as MidPaths. Line 1 sets the slope

of the line. Line 2 solves the IP using IntProg function. Next, Lines 3–4 check for

the termination criteria, i.e., if the new point generated by IntProg coincides with the

points from which the slope was initially derived, then the recursion is exited. The newly

found path p is added to the set of optimal paths E in Line 5.

The complete algorithm is summarized in Algorithm 2 (IPSolver). The algorithm

takes three inputs: Line graph L, maximum run time τ , and expected number of tours on

efficiency frontier k, and returns the set of optimal paths E. Lines 1 and 2 call IntProg

for the extreme points. Line 3 adds the newly discovered tours to set E. Line 4 calls the

recursive function MidPaths until the termination condition is satisfied. Further details

on how to calibrate parameters τ and k are provided in Chapter 5.

Algorithm 1 MidPaths

Input: d̂, d̃, t̂, t̃, τ, k

Output: E : Optimal Paths

1: γ ← d̂−d̃
t̂−t̃

2: p, d, t← IntProg(α = γ, β = 1, time = τ/k)

3: if (d̂, t̂) = (d, t) or (d̃, t̃) = (d, t) or time spent (k−2)τ
k

then

4: return

5: E← E ∪ {p}
6: MidPaths(d, d̂, t, t̂, τ, k)

7: MidPaths(d̃, d, t̃, t, τ, k)
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Algorithm 2 IPSolver

Input: L = (V ′, E ′, V ′
R) , τ, k

Output: E : Optimal paths for MOSTSP

1: E← ∅
2: p̂, d̂, t̂← IntProg(α = 0, β = 1, time = τ/k) ▷ Endpoint of efficiency frontier

3: p̃, d̃, t̃← IntProg(α = 1, β = 0, time = τ/k) ▷ Endpoint of efficiency frontier

4: E← E ∪ {p̂, p̃}
5: MidPaths(d̂, d̃, t̂, t̃, τ, k) ▷ Midpoints of efficiency frontier

Note: The output of the IP is the set of edges belonging to the optimal tour.

However, the actual tour sequence has to be constructed from these edges as part of

the post-processing, and this exercise is not trivial because of potential revisits.

N

3.2 Brute Force Methods for solving bSTSP and

bSTSPTW

This section proposes two brute force methods for solving the MOSTSP—Graph Concate-

nation and Graph Layering. Both methods use the line graph L = (V ′, E ′, V ′
R) as their

input.

3.2.1 Graph Concatenation

For a random permutation of V ′
R = (v1, v2, . . . , vnR

), we first find all optimal bicriteria

paths between every pair of consecutive terminals using a bi-objective label correcting

algorithm. Let Ei,i+1 denote a set of all such optimal paths between (vi, vi+1). The set of

optimal paths from vnR
to v1 be denoted by EnR,nR+1. Next, for i = 1, . . . , nR − 1, we

concatenate each path in Ei,i+1 to paths in Ei+1,i+2. Let E
′ be the resulting set of paths.

We then take the maximal non-dominated subset of E ′, denoted by Epermute. For the

assumed permutation, Epermute denotes the set of optimal tours. This process is repeated
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for all permutations of V ′
R . Finally, the solution set E to the MOSTSP is an MNDS of

the union of all Epermute.

(2, 100)

(5, 60)

Number of turns

En
er
gy

(a) Efficiency frontier of paths

from v1 to v2

Number of turns

(3, 70)

(1, 120)

(5, 10)

En
er
gy

(b) Efficiency frontier of paths

from v2 to v1

Number of turns

(3, 220)

(5, 170)

(7, 110)

(6, 180)

(8, 130)

(10, 70)

En
er
gy

(c) Efficiency frontier with opti-

mal tours from v1–v2–v1

Figure 3.1: Graph concatenation illustration

Figure 3.1 illustrates this procedure on a toy example where nR = 2, i.e., there are

two terminal nodes v1 and v2. Figure 3.1a shows the efficiency frontier from v1 to v2.

Similarly, Figure 3.1b shows the efficiency frontier from v2 to v1. Recall that since our

problem is an Asymmetric STSP, optimal paths from v2 to v1 may be different from v1

to v2. For the complete tour (v1–v2–v1), the efficiency frontier is shown in Figure 3.1c.

Note that the method described above requires nR! number of iterations, and in each

permutation, Martin’s algorithm is used nR times.

The pseudocode for the above procedure is given in Algorithm 3. The algorithm

takes the line graph as input and outputs the set of optimal paths E for MOSTSP. Line

1 iterates over possible permutations of V ′
R. For each permutation, Line 2 adds the

origin node at the end of the terminal set. Lines 3–4 find the efficient paths between

the terminals for a particular permutation. Lines 5–15 join the efficient paths to form

tours that visit all terminals. Line 13 calculates the MNDS of all these tours to find the

optimal tours of the MOSTSP for a particular permutation. Lastly, Line 17 computes

the MNDS of optimal paths across all permutations.
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Algorithm 3 Graph Concatenation (GraphConcat)

Input: L = (V ′, E ′, V ′
R)

Output: E: Optimal paths for MOSTSP

1: for all permut = (v1, v2 . . . vnR
) ∈ permutation of V ′

R do

2: append v1 at the end of V ′
R

3: for vi in V ′
R do

4: Ei,i+1 ← EffPaths(vi, vi+1)

5: E ′ ← {}
6: for i ∈ nR − 1 do

7: for path ∈ Ei,i+1 do

8: if |E ′| = 0 then

9: E ′ ← E ′ ∪ {path}
10: else

11: E ′′ = {}
12: for path trail ∈ E ′ do

13: Append path to the end of path trail

14: E ′′ ← E ′′ ∪ {path trail}

15: E ′ ← E ′′

16: Epermut ←MNDS(E ′)

17: E ←MNDS

( ⋃
permut

Epermut

)

3.2.2 Graph Layering

This section presents an alternate approach to compute the efficiency frontier, termed

Graph Layering. The process starts with a random permutation of V ′
R , (v1, v2 . . . vnR

), and

copies the graph L = (V ′, E ′, V ′
R) into nR additional layers. A node vi in L = (V ′, E ′, V ′

R)

is labelled as v
(1)
i in the first layer, v

(2)
i in the second layer, and so on. For every node v ∈

V ′
R , its copies are connected in the consecutive levels by an edge with an attribute (0, 0).

We henceforth refer to this structure as a composite graph. See Figure 3.2 for reference.

The two terminal nodes v1 and v2 are indicated in pink. Edges in E ′ are shown in black.

Blue lines are extra edges added to connect different levels.
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Using v
(1)
1 and v

(nR+1)
1 as origin and destination, we find the set of optimal paths

Epermute using bi-objective label correcting algorithm in the composite graph. This

procedure is repeated for all possible permutations of V ′
R . Finally, as before, we calculate

the maximal non-dominated subset of the union of all such Epermute. Algorithm 4

describes the pseudocode for the above procedure. Line 1 starts a loop that runs over all

permutations. For each permutation, Line 2 creates nR additional copies of L. Lines 3–5

find the optimal paths of MOSTSP but for a fixed permutation by finding the efficient

paths from the origin of level 1 to the origin of level nR +1. Lastly, Line 6 finds the

MNDS of optimal paths across all permutations.

To see if the application of the graph layering approach is correct, consider the

illustration given in Figure 3.2. To reach a node at a particular level, a path must pass

through the terminal nodes of previous levels. For example, to reach v
(2)
1 , one must enter

level 2, which is possible only via the terminal node v
(1)
1 .

Note: Although the graph layering approach iterates nR! times, note that Martin’s

Algorithm is called only once in each permutation. On the other hand, the graph

concatenation approach calls Martin’s Algorithm nR times for each permutation.

N

Algorithm 4 Graph layering (GraphLayer)

Input: L = (V ′, E ′, V ′
R)

Output: E: Optimal paths for MOSTSP

1: for all permut = (v1, v2 . . . vnR
) ∈ permutation of V ′

R do

2: Create nR additional copies of L = (V ′, E ′, V ′
R)

3: for vi in V ′
R do

4: Add edge connecting v
(i)
i in level i to v

(i+1)
i in level i+ 1 with weight (0, 0)

5: Epermut ← EffPaths(v
(1)
1 , v

(nR+1)
1 )

6: E ←MNDS

( ⋃
permut

Epermut

)
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v3(3) v1(3) v4(3)

v5(3)v2(3)

v3(2) v1(2) v4(2)

v5(2)v2(2)

v3(1) v1(1) v4(1)

v5(1)v2(1)

Level 1

Level 2

Level 3

(0,0)

(0,0)

vi(j) vi(j)
Node i at 
level j

Terminal i
at level j

Edges in 
the graph

Edges between levels
with zero cost attributes

Figure 3.2: Graph layering illustration

Note: The Brute force methods can be trivially extended for bSTSPTW. To incorpo-

rate time windows, time window constraints are checked in both graph concatenation

and graph layering for each permutation of terminals.

N
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3.3 Limitation of Exact Methods

Both the IP and Brute force methods do not scale well with large graphs. As an edge-

based formulation, the IP grows significantly with large graphs. On the other the Brute

force method’s complexity increases exponentially as it examines all permutations of

terminals, resulting in nR! iterations for each method.

Time-constrained versions of these exact methods can be developed to mitigate these

challenges. For example, halting the IP prematurely can provide feasible solutions for both

bSTSP and bSTSPTW problems. We will employ a time-constrained IP to benchmark

the results of our local search procedure. Further details are provided in Chapter 5.

However, it is worth noting that for large graphs, the time-constrained versions of IP

may/ mot not yield a feasible solution.

Brute force methods can be halted prematurely after examining a fixed subset of

permutations of terminals. However, this approach may not identify high-quality solutions,

as Pareto-optimal solutions across all permutations of terminals can significantly vary.

Hence, specialized heuristics for bSTSP and bSTSPTW are required. In the subsequent

chapter, we will present and discuss a novel local procedure, which is designed to address

this issue.
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Heuristic Methods

To achieve great things, two things

are needed: a plan and not quite

enough time.

Leonard Bernstein

Chapter Overview. This chapter presents a novel heuristic method for solving the

bSTSP and bSTSPTW problems. Section 4.1 discusses how to transform an instance of

bSTSP into TSP. However, this method fails when time windows are involved. Section

4.2 outlines our local search heuristic devised for addressing the bSTSPTW problem.

Specifically, Section 4.2.1 illustrates the technique to generate an initial solution. Next,

Section 4.2.2 presents the detail of the neighborhood structure. Lastly, Section 4.2.3

introduces the local search procedure employed in this heuristic approach.

Note: The main contribution of this chapter is the local search heuristic for bST-

SPTW

N

4.1 STSP to TSP Reduction

To convert a single objective STSP instance into a TSP problem, one can calculate

the shortest path between each pair of terminals and generate a complete graph. The
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terminals are represented by the nodes of the complete graph, and the edges are assigned

costs equivalent to the shortest paths between the terminals. By solving the TSP on

this complete graph, a solution for the corresponding STSP can be obtained. However,

computation of a complete graph can sometimes be expensive (Letchford et al., 2013).

As a result, the latest trend in the field is to directly solve the STSP problem by using

heuristics and IP formulations. For example, Letchford et al. (2013) proposed a single

commodity flow based IP formulation, and Interian and Ribeiro (2017) proposed a

Greedy Randomized Adopted Search Procedure (GRASP) based on 2-opt moves for

symmetric STSP. The common underlying motivation behind all these methods is that

the computation of a complete graph is time-intensive. Álvarez-Miranda and Sinnl (2019)

compared the techniques proposed by Letchford et al. (2013) and (Interian and Ribeiro,

2017) to those that utilize a complete graph and then solve using state-of-the-art TSP

solvers like CONCORDE (Applegate et al., 2003). The authors concluded that, in most

practical cases, the latter approach yields faster results.

For solving the bi-objective variants of STSP, one can repeatedly solve the single

objective STSP in conjunction with a scalarization technique (refer Chapter 3). However,

this method fails in our case. This is because when the terminals have time windows

associated with them, the least energy / turns paths between terminals computed to

convert the STSP instance to a TSP instance may not even be feasible with respect to

the time windows.

Therefore, novel heuristics are necessary for solving bSTSPTW. The following section

proposes our new local search heuristic for the same.

4.2 Local Search Procedure for bSTSPTW

This section proposes a new local search-based heuristic method for the bSTSPTW.

To start with, we maintain a non-dominated set Ê that approximates the time window

satisfied Pareto-optimal tours. The set Ê is updated using the procedure AddSolution

(refer Lust and Teghem (2010b) for more details). AddSolution checks if a tour can

be added to Ê (a new tour can be added to Ê only if it is non-dominated with respect to

Ê). If yes, existing tours dominated by the newly added tour (if any) are removed. That
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is, AddSolution ensures that Ê is always a non-dominated set. The pseudocode for

the procedure is given in Algorithm 5. The algorithm takes the set Ê and a tour p as

input and returns the updated set Ê and a Boolean variable Efficient indicating if p was

added to Ê. Line 1 initializes a Boolean variable Efficient as True. For every tour pold in

Ê, Lines 2–5 check if pold is dominated by p. If that is true, Efficient is set to False, and

the loop terminates. Else Lines 6–7 remove all tours that are dominated by p. Finally,

Line 8–9 adds the new tour p to Ê if Efficient is true.

Further, the local search procedure also maintains a set X̂ of “promising” tours which

do not satisfy time windows at all terminals but are expected to satisfy time windows in

all terminals after a few iterations of the local search.

Algorithm 5 AddSolution

Input: Ê, p

Output: Ê : MNDS(Ê ∪ p), Efficient

1: Efficient← True

2: for pold ∈ Ê do

3: if z(pold) ⪯ z(p) then

4: Efficient← False

5: break

6: else if z(p) ≺ z(pold) then

7: Ê ← Ê \{pold}

8: if Efficient = True then

9: Ê ← Ê ∪ {p}

The subsequent sections describe our local search procedure in detail.

4.2.1 Initial Solution

The initial solution to the bSTSPTW is obtained by solving a time window relaxed

version by converting it into an TSP instance using the procedure detailed in Section

4.1. Out of all the tours obtained from the scalarization technique on TSP, the ones that

satisfy time windows are added to Ê. For the tours that are not time windows feasible,
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we define a penalty function. The penalty at a terminal node v is defined as follows:

penalty(v) =


Rv − s if s < Rv

s−Dv if s > Dv

0 if Rv ≤ s ≤ Dv

(4.1)

where, s is the time to reach terminal v from origin, and the Rv, Dv denote minimum,

maximum service time at node v. The total penalty of a path is the sum of the penalties

over all terminals.

path penalty(p) =
∑
v∈VR

penalty(v) (4.2)

Similar to Helsgaun (2017), our use local search procedure uses penalties to deal with

time window constraints. Tours that are not time window feasible, i.e., path penalty(p) >

0, are added to the X̂ set.

4.2.2 Neighborhood Structures

Building on the sequential move neighborhood for symmetric TSP by Lin and Kernighan

(1973); Helsgaun (2000) and asymmetric TSP by Kanellakis and Papadimitriou (1980),

we propose three neighborhood structures: i3optTW, i3opt, quad. The i3opt and

quad neighborhood structures replace sections of a tour with shortest or efficient paths

with the goal of intensification and diversification, respectively. Note that, unlike previous

studies, we limit ourselves to 3-opt and quad moves. The i3optTW move attempts

to repair neighborhood by transforming time window infeasible tours into feasible ones.

Lastly, for a fixed permutation of terminals, the FixedPermNbd move aims to optimize

the path between terminals.

A i3optTW and i3opt

To explain the i3optTW and i3opt neighborhood structures, we first define a gain

function. In a set of non-dominated tours, the gain quantifies how “good” a new path is

compared to the existing ones. Thus, a higher value of gain means the new path has more
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Figure 4.1: Gain function illustration

potential to be added into Ê. Mathematically, the gain function computes the area of

the polygon on the objective space formed by joining the efficiency frontier to the image

of the path on the objective space. See Figure 4.1 for illustration. The new tour being

added is shown in red, and the blue points denote the existing non-dominated tours. The

shaded area indicates the gain. If the new path is non-dominated (dominated) by the

efficient set, the gain is positive (negative). Figures 4.1a and 4.1b, show the example of

positive gain, and Figure 4.1c illustrates negative gain.

Note: From hereon, the gain for a tour p with respect to the efficient set is Ê, will

be denoted by gain (p)

N

Next, we explain the i3optTW and i3opt move. For a given tour, both i3optTW

and i3opt follow a similar procedure, with a few key differences highlighted below. Both

moves operate in two steps.

Step 1: In the first step, we find a pair of terminals x1 = (va, vb) and y1 = (va, vd) that

satisfy the conditions given below. Note that starting node va is common in both x1 and

y1. The section of the path between y1 is obtained by joining va to vd using the shortest

path where the cost matrix is a weighted sum of the attributes, energy, and turns. For

illustration, refer to Figure 4.2.

• x1 = (va, vb) should an adjacent terminal pair. An adjacent terminal pair means

no other terminal node exists in-between xi = (vl, vm) (non-terminal nodes are

allowed). Ensuring adjacency in xi is necessary since it will be removed at later

stages. If the terminals are adjacent, it guarantees that no terminal is lost in the
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Figure 4.2: i3opt and i3optTW step 1 illustration

new tour after applying the neighborhood move, thereby rendering the new tour

feasible for bSTSP.

• There should be at least two terminals between vd to va

• Time to reach terminal vd using path y1 must satisfy time window at vd

For i3optTW move, in addition to the above rules, x1 is set to be the tour segment

that extends from the terminal immediately preceding the violation of the time window

constraint to the terminal where the violation occurs.

For each x1 = (va, vb) and y1 = (va, vd), x2 = (vc, vd) is automatically defined uniquely

as vd is fixed by y1 while vc is the terminal just before vd. This makes x2 = (vc, vd) an

adjacent terminal pair. The tuple (x1, x2, y1) is added to the set of InitialCandidates.

However, in the case of i3opt, the set InitialCandidates is large. To overcome

this, a pre-selection is applied to filter the set InitialCandidates. To do so, the mean

energy consumption and mean turn for all graph edges of the graph are computed. If the

energy consumption / turns in x1 ≤ filter ∗mean ∗ |x1| then all such tuples (x1, x2, y1)

are removed from InitialCandidates. (Here, |x1| refers to a number of edges in x1, the

filter is scaler). The pre-selection criteria help in identifying the adjacent pair of terminal

x1, removal of which will likely improve the tour.

Finally, the gain of path formed by removing x1 and adding y1 is maximized among

all (x1, x2, y1) ∈ InitialCandidates. This concludes the first step.
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Note: Step 1 creates a cycle and sub-path. Following this procedure, the path from

origin to vd satisfies the time window.

N
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Figure 4.3: i3opt and i3optTW step 2 illustration

Step 2: The second step involves breaking the cycle va → vd → va. To accomplish this,

an adjacent terminal pair is selected in the section vd → va. Step 1 ensures the existence

of at least one such adjacent terminal pair x3 = (vm, vn). Consider the example in Figure

4.3. vm is connected to vb using the shortest path y2, where the cost matrix is a weighted

sum of energy and turns. Similarly, vc is connected to vl. The process is repeated for all

possible (x3, y2, y3) combinations. This generates a set of new feasible tours for bSTSP.

The gain for this new tour is gain(tour − x1 − x2 − x3 + y1 + y2 + y3), where tour is the

initial tour on which the neighborhood is applied. The gain and penalty of each tour are

computed, and the “best” tour is selected. The best tour is defined using the following

relation.

P (best tour) ≤ P (p) ∧
(
P (best tour) = Pp ∧ gain(best tour) ≥ gain(p)

)
∀ p (4.3)

where P (p) and gain(p) refer to the penalty of gain of a tour p.
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Note: Selecting best tour using the criterion given above gives more importance to

reducing penalty than improving gain

N

Algorithm 6 provides the pseudocode for the i3opt and i3optTW neighborhood.

Line 1 initializes tour with a random tour from Ê. Line 2–3 finds the tuple (x1, x2, y1)

that maximises the gain for all feasible (x1i, x2i, y1i) ∈ InitialCandidates. Finally,

BreakCycle in Line 4 performs the operations in Step 2 and returns the best tour

along with its penalty and gain.

Algorithm 6 i3Opt and i3OptTW

Input: Z, filter ▷ Z = Ê for i3Opt and Z = X̂ for i3OptTW

Output: new path, penalty, gain

1: tour = Random(Z) ▷ If Z = Ê, the tour is picked based on KDE Random

2: x1, y1 ← argmax(Gain(tour − x1i + y1i)) ∀ (x1i, y1i, x2i) ∈ InitialCandidates

3: x2 is fixed as described in the text

4: best tour, penalty, gain ← BreakCycle(tour, x1, x2, y1) ▷ As described in text

Note: The best tour obtained at the end of performing a i3opt or i3optTW move

might not be time window feasible but is always a feasible tour for bSTSP

N

The i3opt and i3optTW starts from a tour and outputs a new tour. In the case

of i3optTW, the tour is selected randomly from the set X̂, which contains “promising”

tours that do not satisfy time windows. However for i3opt, the tour is selected using

KDE Random (illustrated in Algorithm 7). The algorithm KDE Random allows one to

pick a tour from a relatively less explored portion of the objective space. KDE Random

works as follows: Line 1 computes the Gaussian Kernel Density Estimation for the given

data. Line 2 evaluates the probability density at each data point. The density values are

inverted and squared to assign higher probabilities to data points with low density in Line

3. This corresponds to less explored regions in the objective space. Line 4 normalizes the

probabilities to sum to one. Finally, a random index is chosen from the data based on

the probabilities in Line 5. Thus, when KDE Random is called with turns or energy

cost of the tours in Ê, it would pick a tour from a relatively less explored region from

the objective space.
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Algorithm 7 KDE Random

Input: data

Output: selected index

1: kde← gaussian kde(data)

2: density ← kde.evaluate(data)

3: inverse density ← (1/density) ∗ (1/density)
4: probabilities← inverse density/ (

∑
inverse density)

5: selected index← pick a random number in range [0, |data|] based on the probabilities

B Quad move

The Quad move is a diversification neighborhood aimed at introducing randomness

into the local search to avoid getting trapped in local optima. Quad move randomly

selects four adjacent terminal pairs and rearranges them to create a new bSTSP-feasible

tour. Figure 4.4 explains the workings of the Quad move. Subfigure 4.4a presents the

initial tour and the selected adjacent terminal pairs, and Subfigure 4.4b demonstrates the

breaking of sub-paths. To join the sub-paths, new paths are obtained using a bi-objective

label-correcting algorithm, which provides a set of Pareto-optimal paths between a pair

of nodes. These paths are then combined to create a new tour. Subfigure 4.4c shows the

final output, which is the MNDS from the resulting tours. Since the Quad move yields

multiple tour outputs, it enriches the search process. Algorithm 8 explains the working

of the Quad move neighborhood. Line 1 picks a random tour from Ê. Next, Line 2

finds all pairs of adjacent terminals. Line 3–4 shuffles and randomly picks four unique

pairs. Line 5–8 performs the quad move on the four selected pairs of terminals. Line 9

joins all the paths to form resulting tours.

C FixedPermNbd

For a given permutation of the terminals, the FixedPermNbd aims to improve paths

between terminals. To do so, the graph concatenation approach (described in Chapter 3)

is used to get the best set of tours for that permutation. Note that since FixedPermNbd

does not change the order of terminal visits, the time windows are not disturbed. However,
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Figure 4.4: Quad move illustration

Algorithm 8 quad move

Input: Ê

Output: new path set

1: tour = Random(Ê)

2: pairs← Generate all pairs of adjacent terminals

3: Shuffle pairs randomly

4: Pick the of 4 unique pairs in tour used[0] to used[7] ▷ used[0], used[1] refer to first of

adjacent terminal pair

5: for i ∈ {1, 3, 5, 7} do
6: pi ← subpath of tour from index used[i] to used[i+ 1]

7: for i ∈ {0, 2, 4, 6} do
8: pi set ← bi-objective label correcting paths from used[i] to used[i+ 1]

9: quad paths← [p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7] for p0 in p0 set for p2 in p2 set for

p4 in p4 set for p6 in p6 set]
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computing all the bi-objective shortest paths and joining them is computationally expen-

sive, especially when the number of paths is exponential. Therefore, in FixedPermNbd,

we only find the bi-objective shortest paths between a subset of adjacent terminal pairs.

For all other pairs, shortest paths with cost matrix as a convex combination of energy

and turns paths are used.

To start with, the FixedPermNbd move is applied in instances where a considerable

skew (either in low energy or low turns) is observed along the efficiency frontier. The

tour responsible for the skew is identified, and its neighboring region is investigated while

maintaining a fixed permutation of terminals. A tour is considered skewed in cost (energy

or turns) if its total energy consumption or the number of turns deviates significantly

from the mean energy consumption or turn count of all other tours in the Ê set.

Algorithm 9 illustrates the pseudocode for FixedPermNbd. In Line 1, the function

CheckSkewness identifies the skewed tours (w.r.t. energy or turns). Line 2 randomly

selects one tour from the outliers. Next, in Line 3, a subset of adjacent terminal pairs is

chosen from the tour based on a predetermined probability p. These adjacent terminals

are joined using bi-objective shortest paths in Line 4. Subsequently, new paths are

constructed in Line 5 by joining the remaining terminals using the shortest paths with

cost matrix as a convex combination of energy and turns.

Algorithm 9 FixedPermNbd

Input: Ê

Output: new path

1: outliers← CheckSkewness(Ê)

2: skew path← Random(outliers)

3: Select adjacent pair of terminals from skew path based on a probability p

4: For the selected terminals, change the subpaths using a bi-objective label correcting

the shortest path algorithm

5: new paths← Complete the tour by connecting the remaining terminals with both

the least energy/turns path
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4.2.3 Local Search Procedure

Algorithm 11 illustrates the pseudocode for the local search procedure. Input to the

algorithm is the maximum allowed runtime max time, Line 2 initializes the two sets, Ê,

and X̂, as explained in Section 4.2.1. Line 3 sets the initial values for penalties to infinity.

To facilitate the early removal of inferior x1 subpaths in the i3opt neighborhood, Line 6

reduces the scaler filter from δ to 1. Subsequently, Line 8 applies the i3opt neighborhood

on Ê tours. If the new tour obtained after applying i3opt is Pareto-optimal w.r.t. Ê,

Line 10 calls UpdateSets and updates the set Ê and X̂ depending upon the penalty

value.

Next, the i3optTW neighborhood is applied to the tours in X̂. If the new tour

obtained after applying i3optTW is Pareto-optimal to Ê, and with zero penalty, it is

added to Ê and variable count is set as 0 using UpdateSets. In case the new tour has a

non-zero penalty, it is added to Ê using UpdateSets. Note that the set X̂ is maintained

as a sorted list in the increasing order of penalty, and 10 tours with the least penalty are

kept in X̂. UpdateSets also updates the best penalty of new path reduces penalty. If

skewness is detected in Ê, Lines 14–17 perform the FixedPermNbd neighborhood move.

If there are no updates to Ê for ρ consecutive iterations, a Quad Move is executed.

This marks the completion of a single local search iteration.

Algorithm 10 Update Sets

Input: new tour, Ê, X̂, best penalty, optional count

Output: Ê, X̂, best penalty, optional count

1: if penalty = 0 then

2: Ê, Added← AddSolustion(new tour, Ê)

3: if penalty ≤ best penalty then

4: Add new tour to X̂

5: else

6: count← 0

7: Update Ê to keep top 10 tours with least penalty
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Algorithm 11 Local Search

Input: max time

Output: Ê

1: count← 0

2: Ê, X̂ ←InitialPopulation( )

3: best penaltyE, best penaltyX , best penaltyF ←∞,∞,∞
4: while time spent ≤ max time do

5: count← count+ 1

6: filter ← δ × time spent
max time

▷ reduces from δ to 1

7: If any of the best penalty becomes 0, set that at ∞

8: new tour, penalty, gain← i3opt(Ê)

9: params = new tour, penalty, Ê, X̂, best penaltyE, count

10: Ê, X̂, best penaltyE, count← Update Sets(params)

11: new tour, penalty, gain← i3optTW(Ê)

12: params = new tour, penalty, Ê, X̂, best penaltyX , count

13: Ê, X̂, best penaltyX , count← Update Sets(params)

14: new paths set← FixedPermNbd(Ê)

15: for each new tour in new paths set do

16: params = new tour, penalty, Ê, X̂, best penaltyF

17: Ê, X̂, best penaltyF ← Update Sets(params)

18: if count ≥ ρ then

19: count← 0

20: new paths set← QuadMove(Ê)

21: for each new tour in new paths set do

22: if penalty = 0 then

23: Ê, Added← AddSolustion(new tour, Ê)
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Computational Results

Excellence is a continuous process and

not an accident.

A. P. J. Abdul Kalam

Chapter Overview. This chapter presents the experimental setup followed by a

comparison of the various exact approaches in Section 5.1 and heuristic approaches in

Section 5.2.

All algorithms were implemented in Python 3 and compiled using a 128-core Intel

Xeon Gold CPU clocked at 3.0 GHz with 512 GB RAM. The optimization model was

solved using IBM’s CPLEX. We use two datasets: Amazon Last Mile Routing Research

Challenge Dataset and the road network from Bengaluru, India. The network details

for the chosen test networks from the Amazon Last Mile Routing Research Challenge

Dataset are summarised in Table 5.3. For more details, refer Chapter 1 and Merchan

et al. (2022). To access the scalability of the proposed approaches and test their viability

in the Indian context, we also experiment using the Bengaluru road network obtained

from OpenStreetMaps. Results are presented w.r.t graphs of varying sizes summarized in

Table 5.1. Figure 5.1a shows one such graph for a road network of a radius of 1 km and

20 terminals. The corresponding line graph is shown in Subfigure 5.1b. Note that the

terminal locations were randomly chosen for the Bengaluru network.
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(a) Original road network

(b) Corresponding line graph

Figure 5.1: Test network of radius 1 km. Terminal edges & nodes are indicated in pink.
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Radius (km)
Original Graph Line Graph

# of Nodes # of Edges # of Nodes # of Edges

0.5 239 644 644 1904

1 745 1944 1944 5602

3 6483 17724 17724 53409

4 13177 36904 36904 113472

Table 5.1: Details of various graphs used to generate results for exact methods (Radius : Radius

of the test Network in km, # of Nodes: Number of nodes, # of Edges: Number of edges)

5.1 bSTSP: Exact approaches performance

Table 5.2 illustrates the time taken (in seconds) by the exact methods discussed in

Chapter 3 for the Bengaluru road network. Terminal locations are chosen randomly and

vary in the range of 1− 6. The maximum runtime allowed was 2.5 hours. For comparison,

we also include the runtime IP method taken to find the exact solutions. To get exact

solutions using the IP, all input parameters related to time in Algorithm 1 and Algorithm

2 are initialized to ∞. Results indicate that for all problem instances, GraphConcat

and GraphLayer were much faster than IPSolver. Following additional trends can

be observed.

Recall that GraphConcat uses Martin’s Algorithm nR times on the line graph,

whereas Graph Layer uses bi-objective shortest path algorithm once on the composite

graph, which is nR times larger in size than the line graph. Our empirical results show

that GraphConcat performs better than GraphLayer, suggesting that the complexity

of Martin’s algorithm increases significantly with the graph size. As expected, all three

exact approaches do not scale well. The computational time increases exponentially with

the number of terminals (see Figure 5.2). This is why the algorithms were not tested on

the Amazon Dataset.
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Figure 5.2: Comparison between Graph Concatenation and Graph Layering for different

terminals on a road network of 0.5 km radius.

Radius (km) Terminals
Time required by

GraphConcat

Time required by

GraphLayer

Time required by

IPSolver

0.5

3 1.3 8.3 652.4

4 5.1 36.0 2459.9

5 50.3 381.9 8380.5

6 2214.7 2948.1 –

1

3 5.4 33.7 99.4

4 36.5 481.5 3012.2

5 185.4 14705.0 –

6 44757.6 – –

3

3 509.9 54280.2 –

4 44324.3 – –

5 – – –

6 – – –

Table 5.2: Time (in seconds) for Exact Methods. Blank fields indicate that a solution was

not found under the maximum time limit (2.5 hours). (Radius: Radius of the test network,

Terminals: Number of terminals.)
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Route No.
Original Graph Line Graph

nR # TW
|V | |E| |V ′| |E ′|

18 10116 24139 24139 66000 110 7

896 7408 17593 17593 47850 73 6

1643 28540 70400 70400 198376 87 1

3436 28531 70381 70381 198323 90 4

4236 22681 55913 55913 157406 92 6

4260 29487 72619 72619 204429 143 2

4494 19353 48034 48034 136065 55 9

Table 5.3: Details of various graphs used to generate results for heuristic methods (Route No.:

Entry number in the Amazon Dataset, # TW : Number of terminals with time windows)

5.2 bSTSPTW: Heuristic approach performance

We benchmark the performance of local search against time-constrained IP. All exper-

iments below are w.r.t the Amazon Dataset. The quality of Pareto-optimal solutions

obtained is compared based on two performance indicators described below.

• Hypervolume (HV) (Zitzler et al., 2003): Hypervolume finds the area in the

objective space that is dominated by the solution set with respect to a reference

point. Since evaluating the full efficiency frontier for large graphs is computationally

infeasible, comparing HV values makes more sense. Solution quality can be judged

directly from its HV value (the higher the HV, the better the quality). In case

there are two nadir points (x1, y1) and (x2, y2) (corresponding to the two efficiency

frontiers by IP and local search), the reference point is worse in each objective,

i.e., max(x1, x2), max(y1, y2) (A nadir point is defined as the vector for which

each component has its maximum value in the points of the non-dominated front.

For more details, refer (Audet et al., 2021)). This assures that both solutions

always dominate the reference point. Figure 5.3 illustrates the implementation

of hypervolume in our case. The figure shows two efficiency frontier and their

corresponding nadir points (in blue). Here, the reference point is the nadir point
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of the first efficiency frontier. The hypervolume of each efficiency frontier will be

as shown. Note that the exact implementation of HV varies in the literature. For

the present case, we use a metric similar to the one implemented in pymoo (Blank

and Deb, 2020), in which the Hypervolume value is normalized by the area of the

rectangle formed with two opposite vertices, one at the nadir point and the other

corresponding to a minimum of both objectives (“rectangle area”). Figure 5.4

illustrates this for one of the test networks.

• Cardinality Metric (CM) (Riquelme et al., 2015): The CM value of a method is

the number of solutions provided by it. A higher value of CM indicates that the

solution set will be larger and is, thus, preferred as it provides a more diversified

solution set.

Number of turns

Hypervolume for 1st
Efficiency Frontier

Nadir Point for 1st
Efficiency Frontier
(Reference Point)

Nadir Point for 2nd
Efficiency Frontier

1st Efficiency 
Frontier

2nd Efficiency 
Frontier

Hypervolume for 2nd
Efficiency Frontier

En
er
gy

Figure 5.3: Hypervolume indicator and nadir point
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Figure 5.4: Hypervolume and normalised hypervolume

The experimental setup for IP is described as follows. To make a fair comparison,

both approaches are run for τ = 1 hour. Recall that the local search works in two stages.

First, optimal bSTSP tours are obtained using the scalarization technique. Of all these

solutions, the optimal bSTSPTW tours are filtered. On these solution, the neighborhoods

are applied. For local search, the time for initial solution generation was set to one-fourth

of the total time budget τ . For IP, τ only measures the time for finding the set optimal

edges (i.e., post-processing time is not included). The desired number of tours k in IP

is set to 2 in order to maximize the time to solve each IP. It is worth noting with a

fixed total time budget, increasing k would reduce the time given to solve each IP during

scalarization. For a particular instance of α and β, the IP is run for τ
k
time. It should

be noted that the final number of tours in the IP output is often less than k because

iterations of MidPaths would not generate a new point every time. The results of the

local search and time-constrained version of IP for bSTSPTW are summarized in Table

5.5.

Further, to examine the effectiveness of the heuristic technique, the local search method

was allowed to run for shorter periods of time — 15 minutes and 30 minutes. The reference

point for the hypervolume in these cases was taken to be the same as that of one hour.

56



Chapter 5. Computational Results

By doing so, we are able to quantify how good solutions were obtained in smaller time

limits. The results are summarized in Table 5.6 and 5.7, respectively. Figure 5.6 shows

the results after 15 minutes, Subfigure 5.6a shows the initial solution using scalarization

and the tours that satisfy time windows, Subfigure 5.6b shows the results of the local

search that started with the initial solutions in Subfigure 5.6a. Subfigure 5.6c shows both

plots together. Similarly, Figure 5.7 and Figure 5.8 show the efficiency frontier after 30

min and 1 hour respectively. Finally, Table 5.4 compares the hypervolume improvement

over time. Figure 5.5 visualizes the improvement of hypervolume over time.

Route

No.

Hypervolume

15

min

30

min

60

min

18 0.32 0.78 0.89

896 0.79 0.8 0.8

1643 0.65 0.86 0.93

3436 0.25 0.96 0.96

4236 0.26 0.88 0.96

4260 0.49 0.78 0.87

4494 0.71 0.75 0.76

Table 5.4: Local search hypervol-

ume at different times
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HV
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Local search hypervolume with time

18 896 1643 3436 4236 4260 4494

Figure 5.5: Hypervolume at different times of local

search

Route No.
Initial solution using scalerization Local search IP

CM (bSTSP) CM (bSTSPTW) HV CM HV CM HV

18 7 5 0.83 33 0.91 –

896 5 4 0.79 18 0.8 –

1643 3 3 0.8 41 0.93 –

3436 5 2 0.82 42 0.96 –

4236 4 2 0.87 21 0.88 –

4260 4 3 0.38 34 0.87 –

4494 7 6 0.67 55 0.76 –

Table 5.5: Local search vs. IP solutions to bSTSPTW after 1 hour (blank field indicates no

solutions could be obtained in 1 hour.)
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Route No.
Initial solution using scalerization Local search

CM (bSTSP) CM (bSTSPTW) HV CM HV

18 3 2 0.25 32 0.32

896 5 4 0.79 20 0.79

1643 2 2 0 23 0.65

3436 2 1 NA 21 0.25

4236 2 2 0 11 0.26

4260 2 2 0 17 0.49

4494 3 2 0.24 49 0.71

Table 5.6: Local search solutions to bSTSPTW after 15 min

��)�)
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��)���������	)�(������)�� 

(a) Scalerization results after 4 minutes
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Local search: route 4494 with |V| = 19353, |E| = 48034, and n_R = 55

(b) Local search results after 15 minutes
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Figure 5.6: Results for route no. 4494 after 15 minutes
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Route No.
Initial solution using scalerization Local Search

CM (bSTSP) CM (bSTSPTW) HV CM HV

18 5 4 0.73 44 0.78

896 5 4 0.79 16 0.8

1643 3 3 0.8 13 0.86

3436 3 1 NA 39 0.96

4236 4 2 0.87 28 0.88

4260 2 2 0 36 0.78

4494 5 3 0.67 44 0.75

Table 5.7: Local search vs. IP solutions to bSTSPTW after 30 min
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(a) Scalerization results after 7.5 minutes
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(b) Local search results after 30 minutes
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Figure 5.7: Results for route no. 4494 after 30 minutes
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(a) Scalerization results after 15 minutes
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(b) Local search results after 60 minutes
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Figure 5.8: Results for route no. 4494 after 60 minutes

Theoretically, since the IP is an edge-based formulation, its computation time grows

only with the size of the graph. On the other hand, the time required for the local search

method depends heavily on the number of terminals. Hence, local search is expected to

give better results for large graphs. See Table 5.5. Since the IP couldn’t give any solution

in the stipulated 1 hour in any of the test cases, only the time to get one feasible tour

for bSTSPTW using IP formulation was checked. In this case, we set α = 0 and β = 1,

which corresponds to the minimum turns case. The reason for choosing this particular

alpha, beta combination is that it makes the cost matrix binary, making it easier to

solve. Remarkably, the Integer Programming (IP) method was unable to yield a feasible

solution within a 24-hour time frame for any of the test cases, indicating the challenging

nature of the bSTSPTW problem.
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Chapter 6

Conclusions and Future Directions

I am glad you are here with me. Here

at the end of all things, Sam.

J.R.R. Tolkien,

The Return of the King

Chapter Overview. This chapter concludes the discussion in the thesis in Section 6.1

and discusses some future research directions of the work in Section 6.2

6.1 Conclusion

Optimizing logistics and delivery operations routes can be complex and challenging

since various factors like route length, duration, cost, and safety need to be considered.

Additionally, the energy consumption and the number of turns in a route can significantly

impact the efficiency of operations, making bi-objective tours that satisfy time windows

at terminals an attractive solution for logistics companies. However, finding optimal

solutions to this problem is computationally challenging and lacks fast heuristic solution

approaches.

To address this gap, this thesis proposes a new local search heuristic based on several

new neighborhoods for the Bi-criterion asymmetric steiner traveling salesman problem

with time windows (bSTSPTW). The proposed approach is benchmarked against an
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IP formulation for bSTSPTW that extends the standard STSP for multiple objectives

and time windows. The empirical analysis is conducted on real-world networks from

historical route data from the Amazon last-mile routing challenge. The quality of the

non-dominated tours on the Pareto-frontier is compared based on several performance

indicators like hypervolume and cardinality metrics.

The results indicate that the local search method yields considerably better results

and gives many more tours than the IP method, which could not even generate a

feasible solution in 24 hours in any test case. Thus, local search characterizes a better

frontier. Furthermore, two exact approaches for MOSTSP are proposed, namely Graph

Concatenation and Graph Layering. Compared to the IP, the exact methods were

significantly faster. The exact approaches work better with smaller graphs and fewer

terminals (less than 6), and the heuristic methods work best with large graphs with a

moderate number of terminals (50–200). Thus, the exact approaches provide an alternative

for smaller graphs with fewer terminals. The empirical analysis conducted on real-world

networks from the Amazon last mile routing challenge demonstrates the effectiveness of

the proposed approach in finding non-dominated tours on the Pareto-frontier.

6.2 Future directions

The findings in this thesis call for exploring other advanced heuristic approaches for

MOSTSP. Since the quality of solutions provided by local search decreased for higher

number of terminals, future heuristics should consider larger-sized neighborhoods than

the ones proposed in this work. One such direction is extending the k-opt neighborhoods

proposed for standard TSPs towards the MOSTSP, enabling the exploration of a significant

portion of the feasible region in each iteration. Another direction would be to explore

different scalarization techniques for the IP that better suit the optimization criteria,

such as energy consumption and number of turns. Finally, since the problem deals with

negative weights, modern approaches that can solve shortest paths in near-linear time

can be employed.

62



Bibliography

Cedric De Cauwer, Wouter Verbeke, Thierry Coosemans, Saphir Faid, and Joeri

Van Mierlo. A data-driven method for energy consumption prediction and energy-

efficient routing of electric vehicles in real-world conditions. Energies, 10(5):608, 2017.

1

World Health Organization. World report on road traffic injury prevention: summary. In

World report on road traffic injury prevention: summary, pages ix–52. 2004. 2

RTITB. Are we doing enough to prevent workplace fatalities in the transport and logistics

industry?, 2023. URL https://www.rtitb.com/. Accessed: 2023-04-21. 2

Chuck Holland, Jack Levis, Ranganath Nuggehalli, Bob Santilli, and Jeff Winters. UPS

Optimizes Delivery Routes. Interfaces, 47(1):8–23, 2017. 2, 23

Stephen Wood. Analyzing the Economic Impact of Inefficient Left Turns in Urban Traffic.

PhD thesis, Worcester Polytechnic Institute, 2020. 2

Eun-Ha Choi. Crash Factors in Intersection-Related Crashes: An On-Scene Perspective.

2010. 2

Ernesto Queiros Vieira Martins. on a Multicriteria Shortest Path Problem. European

Journal of Operational Research, 16(2):236–245, 1984. 4, 11

Oriol Travesset-Baro, Marti Rosas-Casals, and Eric Jover. Transport energy consumption

in mountainous roads. a comparative case study for internal combustion engines

and electric vehicles in andorra. Transportation Research Part D: Transport and

Environment, 34:16–26, 2015. 5

63

https://www.rtitb.com/


BIBLIOGRAPHY

Daniel Merchan, Jatin Arora, Julian Pachon, Karthik Konduri, Matthias Winkenbach,

Steven Parks, and Joseph Noszek. 2021 amazon last mile routing research challenge:

Data set. Transportation Science, 2022. 6, 50

OpenStreetMap contributors. Openstreetmap, 2023. URL https://www.openstreetmap.

org/. Accessed: 2023-04-21. 6

USGS. Elevation point query service, 2023. URL https://apps.nationalmap.gov/

epqs/. Accessed: 2023-04-21. 6

Electrive. Huge order for lion electric trucks from amazon. https://www.electrive.com/

2021/01/11/huge-order-for-lion-electric-trucks-from-amazon/, 2021. Ac-

cessed: 2023-04-26. 7

Holger R Maier, Saman Razavi, Zoran Kapelan, L Shawn Matott, J Kasprzyk, and

Bryan A Tolson. Introductory overview: Optimization using evolutionary algorithms

and other metaheuristics. Environmental modelling & software, 114:195–213, 2019. 12,

13

George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-scale traveling-

salesman problem. Journal of the operations research society of America, 2(4):393–410,

1954. 17, 26

Adam N Letchford, Saeideh D Nasiri, and Dirk Oliver Theis. Compact Formulations of

the Steiner Traveling Salesman Problem and Related Problems. European Journal of

Operational Research, 228(1):83–92, 2013. 18, 19, 25, 26, 27, 38

Gilbert Laporte. The traveling salesman problem: An overview of exact and approximate

algorithms. European Journal of Operational Research, 59(2):231–247, 1992. 18, 20

Martin Desrochers and Gilbert Laporte. Improvements and extensions to the miller-

tucker-zemlin subtour elimination constraints. Operations Research Letters, 10(1):

27–36, 1991. 18, 26

Bezalel Gavish and Stephen C Graves. The travelling salesman problem and related

problems. 1978. 19, 26

64

https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://apps.nationalmap.gov/epqs/
https://apps.nationalmap.gov/epqs/
https://www.electrive.com/2021/01/11/huge-order-for-lion-electric-trucks-from-amazon/
https://www.electrive.com/2021/01/11/huge-order-for-lion-electric-trucks-from-amazon/


BIBLIOGRAPHY

Manfred Padberg and Ting-Yi Sung. An analytical comparison of different formulations

of the travelling salesman problem. Mathematical Programming, 52(1-3):315–357, 1991.

19

Luis Gouveia and Stefan Voß. A classification of formulations for the (time-dependent)

traveling salesman problem. European Journal of Operational Research, 83(1):69–82,

1995. 20

Fatma A Karkory and Ali A Abudalmola. Implementation of heuristics for solving

travelling salesman problem using nearest neighbour and minimum spanning tree

algorithms. International Journal of Computer and Information Engineering, 7(10):

1524–1534, 2013. 20

Refael Hassin and Ariel Keinan. Greedy heuristics with regret, with application to the

cheapest insertion algorithm for the tsp. Operations Research Letters, 36(2):243–246,

2008. 20

Nicos Christofides, Aristide Mingozzi, and Paolo Toth. Exact algorithms for the vehicle

routing problem, based on spanning tree and shortest path relaxations. Mathematical

programming, 20:255–282, 1981. 21

Michael Held and Richard M Karp. The Traveling-Salesman Problem and Minimum

Spanning Trees. Operations Research, 18(6):1138–1162, 1970. 21

Georges A Croes. A method for solving traveling-salesman problems. Operations research,

6(6):791–812, 1958. 21

F Bock. An algorithm for solving’traveling salesman’and related network optimization

problems, presented at the 14th national meeting of the operations research society of

america, st. Louis, Missouri, 1958. 21

Andrius Blazinskas and Alfonsas Misevicius. Combining 2-opt, 3-opt and 4-opt with

k-swap-kick perturbations for the traveling salesman problem. Kaunas University of

Technology, Department of Multimedia Engineering, Studentu St, pages 50–401, 2011.

21

65



BIBLIOGRAPHY

Jean-Yves Potvin, Guy Lapalme, and Jean-Marc Rousseau. A generalized k-opt exchange

procedure for the mtsp. INFOR: Information Systems and Operational Research, 27

(4):474–481, 1989. 21

Kernighan Lin. Lin s., kernighan bw. An effective heuristic algorithm for the traveling-

salesman problem, Oper. Res, 21(2):498–516, 1973. 21

Shen Lin and Brian W Kernighan. An Effective Heuristic Algorithm for the Traveling-

Salesman Problem. Operations research, 21(2):498–516, 1973. 21, 26, 40

Keld Helsgaun. An effective implementation of the lin–kernighan traveling salesman

heuristic. European journal of operational research, 126(1):106–130, 2000. 21, 22, 40

Sumanta Basu. Tabu search implementation on traveling salesman problem and its

variations: a literature survey. 2012. 21

Christopher C Skiscim and Bruce L Golden. Optimization by simulated annealing: A

preliminary computational study for the tsp. Technical report, Institute of Electrical

and Electronics Engineers (IEEE), 1983. 21
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Temel Öncan, İ Kuban Altınel, and Gilbert Laporte. A comparative analysis of sev-

eral asymmetric traveling salesman problem formulations. Computers & Operations

Research, 36(3):637–654, 2009. 21

David S Johnson, Gregory Gutin, Lyle A McGeoch, Anders Yeo, Weixiong Zhang, and

Alexei Zverovitch. Experimental analysis of heuristics for the atsp. The traveling

salesman problem and its variations, pages 445–487, 2007. 22

Alan M Frieze, Giulia Galbiati, and Francesco Maffioli. On the worst-case performance

of some algorithms for the asymmetric traveling salesman problem. Networks, 12(1):

23–39, 1982. 22

66



BIBLIOGRAPHY

Weixiong Zhang. Truncated branch-and-bound: A case study on the asymmetric tsp. In

Proc. Of AAAI 1993 Spring Symposium on AI and NP-hard problems, volume 160166,

1993. 22

Hitokazu Matsushita, Ogden Mills, Nathan Lambson, and Tony Martinez. The traveling

salesman problem: Adapting 2-opt and 3-opt local optimization to branch & bound

techniques. 2011. 22

Gerard Sierksma. Hamiltonicity and the 3-opt procedure for the traveling salesman

problem. Applicationes Mathematicae, 22(3):351–358, 1994. 22

Paris-C Kanellakis and Christos H Papadimitriou. Local Search for the Asymmetric

Traveling Salesman Problem. Operations Research, 28(5):1086–1099, 1980. 22, 26, 40

Jill Cirasella, David S Johnson, Lyle A McGeoch, and Weixiong Zhang. The asymmetric

traveling salesman problem: Algorithms, instance generators, and tests. In Algorithm

Engineering and Experimentation: Third International Workshop, ALENEX 2001

Washington, DC, USA, January 5–6, 2001 Revised Papers, pages 32–59. Springer, 2001.

22

Nosheen Qamar, Nadeem Akhtar, and Irfan Younas. Comparative Analysis of Evolutionary

Algorithms for Multi-Objective Travelling Salesman Problem. International Journal of

Advanced Computer Science and Applications, 9(2):371–379, 2018. 23

Eric Angel, Evripidis Bampis, and Laurent Gourvès. A dynasearch neighborhood for the

bicriteria traveling salesman problem. In Metaheuristics for Multiobjective Optimisation,

pages 153–176. Springer, 2004. 23

Thibaut Lust and Jacques Teghem. The multiobjective traveling salesman problem: a

survey and a new approach. Advances in Multi-Objective Nature Inspired Computing,

pages 119–141, 2010a. 23

Luis Paquete, Marco Chiarandini, and Thomas Stützle. Pareto local optimum sets in the
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Salomon. Performance Indicators in Multiobjective Optimization. European journal of

operational research, 292(2):397–422, 2021. 54

J. Blank and K. Deb. pymoo: Multi-objective optimization in python. IEEE Access, 8:

89497–89509, 2020. 55

Nery Riquelme, Christian Von Lücken, and Benjamin Baran. Performance Metrics in

Multi-Objective Optimization. In 2015 Latin American Computing Conference (CLEI),

pages 1–11. IEEE, 2015. 55

70


	Acknowledgements
	Declaration
	List of Publications
	Abstract
	List of Tables
	List of Figures
	List of Algorithms
	List of Acronyms
	Keywords
	Introduction
	Motivation
	Problem Statement and Contributions
	Description of Dataset
	Definitions and Notations
	Thesis Outline

	A Brief History of Various Variants of Traveling Salesman Problem
	Traveling Salesman Problem (TSP) – The vanilla version
	Integer Programs
	Heuristic Methods

	Variants of TSP
	Asymmetric TSP (ATSP)
	Multi Objective Traveling Salesman Problem (MOSTSP)
	Traveling Salesman Problem with Time Windows (TSPTW)
	Steiner Traveling Salesman Problem (STSP)


	Exact Solution Methods
	Integer Program for bSTSP and bSTSPTW
	Brute Force Methods for solving bSTSP and bSTSPTW
	Graph Concatenation
	Graph Layering

	Limitation of Exact Methods

	Heuristic Methods
	STSP to TSP Reduction
	Local Search Procedure for bSTSPTW
	Initial Solution
	Neighborhood Structures
	Local Search Procedure


	Computational Results
	bSTSP: Exact approaches performance 
	bSTSPTW: Heuristic approach performance

	Conclusions and Future Directions
	Conclusion
	Future directions


		2023-04-27T06:52:16-0700
	Agreement certified by Adobe Acrobat Sign




