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Abstract

Error bounds for stochastic user equilibrium traffic

assignment

Debojjal Bagchi, M.S.E
The University of Texas at Austin, 2025

SUPERVISOR: Stephen D. Boyles

In stochastic user equilibrium traffic assignment, we derive bounds on the

distance between a given feasible solution and the equilibrium solution. The intent

is to provide guidance on termination criteria to reduce runtimes, which is important

because the traffic assignment problem is often a subproblem of a more complex bilevel

optimization. These mathematical bounds complement existing rules of thumb drawn

empirically from numerical case studies.

Our approach is based on Taylor’s theorem, applied to the fixed-point formu-

lation of the stochastic user equilibrium assignment, and provides upper bounds on

differences in both aggregate metrics (average link travel cost, total system travel

time) and disaggregate metrics (link flows, path flows). We demonstrate that the

proposed path flow, link flow, and travel cost bounds are tight and cannot be fur-

ther improved without additional restrictions on the network topology or problem

instance.

Results on city-level networks indicate that the bounds on path flows are rea-

sonably tight, with the absolute difference between the derived bound and actual

value often in the order of 10−1. We study the tradeoff between the distance from
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equilibrium—where the bound becomes applicable—and its tightness. Detailed re-

sults guide the choice of a parameter that yields the tightest possible bound for a given

distance from equilibrium. Empirical evidence shows that the bound on the distance

between any feasible path flow and the equilibrium flow exhibits a near-linear rate of

convergence close to equilibrium. This convergence rate is found to be close to 0.9,

consistent across all tested networks.

Finally, we demonstrate the practical utility of the derived bounds in a simple

network design problem to find optimal link closures. By enumerating the complete

feasible set, we show a 36% improvement in computation time on the Sioux Falls

network when using the derived bounds, compared to not using them.
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distance from equilibrium ∥ĥ− h∥OD. The x-axis denotes the number
of MSA iterations, and the y-axis represents the norm value. . . . . . 59

5.5 BMC - Semilog plot of all iterations for path bound for 16 random
OD pairs. The orange line represents the bound MOD

hr ∥L(h) − h∥OD,

while the blue line depicts the actual distance from equilibrium ∥ĥ −
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Chapter 1: Introduction

Traffic assignment problems predict the routes travelers are likely to choose

based on congestion caused by traffic flow in the network. Algorithms for solving these

problems start with a feasible route choice and iteratively improve the solution with

the goal of moving closer to an equilibrium solution. Since traffic assignment problems

typically involve large-scale nonlinear optimization, reaching an exact equilibrium

solution is often computationally expensive. Hence, several stopping criteria are often

used to determine if the current solution is reasonably close to the equilibrium solution

so that the iterative procedure can be terminated.

While modern solvers can reach near-equilibrium solutions for a single traffic

assignment problem within seconds or minutes, many practical applications require

solving such problems repeatedly—often tens of thousands of times. This is especially

true when the traffic assignment problem has to be solved as a subproblem to a larger

optimization framework, such as network design, pricing, Monte Carlo simulation,

and other bi-level programs. In such cases early termination becomes particularly

important.

Traditional gap functions, such as the difference between the average experi-

enced travel cost and the shortest path travel cost, are used to measure how well the

current solution satisfies the equilibrium principle. However, these functions do not

directly quantify how close the traffic flows are to equilibrium flows. Researchers have

investigated this question numerically, as in the studies by Boyce et al. (2004) and

Patil et al. (2021), showing how specific numerical values of a gap function correlate

with the convergence of flows and other aggregate metrics (such as total system travel

cost and vehicles miles traveled). Patil et al. (2021) show disaggregate metrics such as

path flows stabilize within 1% of equilibrium at a relative gap of approximately 10−6.

However, more aggregate metrics stabilize earlier — link flows stabilize at a relative

gap of around 10−5, and the total system travel cost stabilizes at around 10−4.
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In most practical applications, we are primarily interested in aggregate metrics

such as travel costs and total system travel cost rather than path flows. Hence, valu-

able computational resources could be saved by developing a systematic methodology

that complements existing numerical results on the convergence behavior of difference

metrics at varying gap levels. This would allow the evaluation of a more extensive

set of alternatives, which is especially valuable in bi-level optimization programs.

The goal of this thesis is to derive mathematical bounds to complement the

extant numerical evidence. In particular, we derive local upper bounds on distance

of any feasible path flow solution to the equilibrium solution. Using the result on the

bounds on path flows, we also bound the distance of link flows, link cost and total

system travel cost of any solution from equilibrium solution.

1.1 Motivation

Consider the following scenario. Suppose n traffic assignment problems have

been solved, and consequently, n alternatives have been evaluated as a part of a bi-

level optimization problem. While evaluating the (n + 1)th alternative, if it could

be determined in early iterations that this alternative would never yield a better

equilibrium solution than the n alternatives already evaluated, the (n+1)th alternative

could be terminated quite early, allowing the next alternative to be assessed saving

unnecessary computation time.

To develop a theory behind gap functions and convergence in traffic assignment

problems, we are interested in estimating the distance between a feasible solution and

the equilibrium solution without requiring prior knowledge of the equilibrium itself.

For every feasible path flow, we can identify a corresponding target flow that travelers

would choose to move toward equilibrium. Note that at equilibrium, the target path

flow coincides with the equilibrium path flow. Our goal is to use the distance between

a feasible solution and its corresponding target path flow to derive upper bounds on

how far the feasible solution is from equilibrium.
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Figure 1.1: Small perturbation in h (shown in orange) causes large changes in target
flow L(h) (shown in blue) in DUE, but small changes in SUE. The equilibrium path
flow ĥ is shown in green.

To achieve this, we require a model in which the target path flow varies con-

tinuously in the current path flows. Hence, we use the stochastic user equilibrium

(SUE) model, assuming logit path choice to solve for the traffic assignment problem.

Even though the studies by Boyce et al. (2004) and Patil et al. (2021) used deter-

ministic user equilibrium (DUE), a major advantage of SUE for our purposes is that

the “target” solution is continuous in the current solution. By contrast, the corre-

sponding map for DUE (the “all-or-nothing assignment”) is multivalued whenever

paths are tied in cost, and small changes in path costs can cause large shifts in the

all-or-nothing assignment. This distinction is explained in Figure 1.1. Figure 1.1a

demonstrates how a slight perturbation in path flows, h, can cause a discontinuous

jump in the all-or-nothing assignment, L(h) in DUE. By contrast, Figure 1.1b shows

that in SUE, small changes in path flows result in small changes in target flows. The

equilibrium solution, ĥ, is marked in both figures for reference.

1.2 Objectives

The discussion in Section 1.1 naturally poses the following mathematical ques-

tion: given a feasible solution to the traffic assignment problem, can we bound its
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distance from the equilibrium solution? For instance, if we are only concerned with

travel cost, we want to determine an upper bound on how much the travel cost of

any particular feasible solution deviates from the equilibrium cost. In this thesis, for

any feasible path flow solution close to SUE, we bound its distance from equilibrium,

∥ĥ−h∥, in terms of its distance from its target flow, ∥L(h)−h∥. See Figure 1.1b for

reference. The bounds for link flows, link costs, and total system travel cost follow

directly.

The research applies to wherever early termination of traffic assignment prob-

lems is necessary. Further, from a purely mathematical standpoint, the thesis provides

theoretical background on the rule-of-thumb stopping criteria for traffic assignment

algorithms. The main objectives of this study are listed below.

1. Existence of upper bounds. We present (local) upper bounds on the distance

between a feasible path flow solution of the traffic assignment problem and the

equilibrium path flows. Using the path flow bounds, we present (local) upper

bounds on the distance of aggregate metrics (such as link flows, travel costs,

and total system travel cost). The bounds provided are local and only apply

close to the equilibrium solution.

2. Tightness of the proposed bounds. We show there exists a network where

the proposed bounds are tight for any solution. We analyze the tradeoff between

the range of applicability and tightness of these upper bounds. Specifically, we

provide detailed results on how close to the equilibrium solution these bounds

remain applicable and how tight they are.

3. Convergence of the proposed bounds. We empirically show that the gap

between our proposed path flow bounds and actual distance from equilibrium

decreases following a linear convergence rate near equilibrium when method

of successive averages is used to solve the stochastic user equilibrium traffic

assignment problem.
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4. Computational results on validity and applicability of the proposed

bounds. We present detailed results demonstrating the application of our

bounds on the Sioux Falls, Eastern Massachusetts, Berlin Mitte Center, and

Anaheim networks. We further demonstrate the practical utility of our proposed

bounds using a simple network design problem to find optimal link closures.

1.3 Organization of the thesis

The remainder of the thesis is organized as follows. Chapter 2 reviews existing

literature on traffic assignment, SUE, bi-level traffic assignment problems, and math-

ematical bounds in traffic assignment problems. Chapter 3 presents the logit route

choice model and certain well-known mathematical properties of SUE. Chapter 3 also

reviews the necessary mathematical background required for the subsequent chapters

in the thesis. Chapter 4 presents the main contributions of the thesis—upper bounds

on the distance of path flow, link flows, travel cost, and total system travel cost from

equilibrium. Chapter 5 follows with the computational results, and 6 concludes the

thesis with recommendations and future work.

17



Chapter 2: Literature Review

2.1 The traffic assignment problem

Traffic assignment problems are route choice models that predict user behavior

for a given demand at different origin-destination (OD) pairs under varying congestion

levels. These problems can be broadly categorized into static and dynamic models,

depending on whether they account for temporal variations in network conditions. A

detailed discussion of these models can be found in Boyles et al. (2025).

For long-range planning, static models are generally preferred over dynamic

models unless demand is known with high accuracy. This is because it is challenging

to predict temporal demand data into the future, and dynamic models are highly

sensitive to input data (Boyles and Ruiz Juri, 2019). Static models, on the other hand,

are much more reliable, fast, and efficient. Additionally, static traffic assignment

enjoys several mathematical properties, including existence, uniqueness, and efficiency

of equilibrium, none of which might be true for dynamic traffic assignment (Iryo,

2013).

Traditional traffic assignment models includes link-based methods such as the

method of successive averages (MSA), which uses a convex combination of current

and target path flows, and Frank-Wolfe’s method, which determines the appropriate

step size in MSA. Further, there are methods that retain information from all previous

iterations of traffic assignment to get an improving direction. A detailed explanation

of these algorithms can be found in Boyles et al. (2025). In recent years, there have

been a great deal of advancements in solving static traffic assignment models. Some

of the state-of-the-art approaches include TAPAS (Bar-Gera, 2010), Algorithm B

(Dial, 2006), LUCE (Gentile, 2014), and origin based assignment (Bar-Gera, 2002;

Nie, 2012).

18



2.2 Stochastic traffic assignment

Within static traffic assignment, there are further subdivisions—deterministic

and stochastic traffic assignment. Deterministic traffic assignment assumes users have

perfect knowledge of travel costs and that travel cost measurements are accurate. In

contrast, stochastic traffic assignment relaxes this assumption (Daganzo and Sheffi,

1977), requiring a route choice model based on the distribution of errors between

actual and perceived travel costs.

Several route choice models can be used for stochastic traffic assignment.

Prashker and Bekhor (2004) extensively review several such route choice models.

Specifically, the two main models in this context are the logit model, which assumes in-

dependently and identically distributed errors, and the probit model, which accounts

for correlations between errors by assuming a multivariate normal distribution.

Despite its ability to model user behavior under imperfect knowledge of travel

costs, stochastic traffic assignment with a logit-based route choice model still of-

fers several mathematical properties. Firstly, it is well-known that a stochastic user

equilibrium exists and is unique under mild conditions, and can be expressed as the

minimum point of a strictly convex function (Boyles et al., 2025; Fisk, 1980). More-

over, the target path flows are continuous in the current path flows. Bar-Gera and

Boyce (2006) argue that models with continuous target points have certain advan-

tages, among them that the method of successive averages can actually work quite

well if used with a constant step size.

Algorithms developed for solving deterministic traffic assignments can be eas-

ily adapted to solve stochastic traffic assignment problems (Boyles et al., 2025).

Cantarella and Cascetta (1998) provide a comprehensive summary of several such

algorithms and discuss stochastic traffic assignment in detail. The method of suc-

cessive averages is the most widely used algorithm for solving stochastic traffic as-

signments. Dial’s method (Dial, 1971), later improved by Si et al. (2010), is often

employed in the stochastic network loading step in MSA. Further, using a constant
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step size (Bar-Gera and Boyce, 2006) in MSA can significantly improve computa-

tional efficiency for stochastic traffic assignment. Other algorithms have also been

proposed that outperform MSA for specifically logit route choice-based stochastic

traffic assignment. For instance, Maher (1998) computes the optimal step length at

each iteration, leading to significantly improved convergence. They also explore the

use of the Davidon–Fletcher–Powell (DFP) method for determining search direction;

however, for large networks, its performance is comparable to that of MSA and worse

than the optimal step length approach.

Although various algorithms have improved the efficiency of solving traffic as-

signment problems, their computational performance remains a concern (Patil et al.,

2021), particularly when traffic assignment is used as a subproblem in bilevel op-

timization and network design. This has led to continued research in speeding up

traffic assignment problems as seen in works such as Schneck and Nökel (2020) in

DUE and Jiang (2024) in SUE. Jiang (2024) uses a variational inequality formulation

for SUE when the choice set is bounded choice to develop efficient algorithms while

Schneck and Nökel (2020) use customizable contraction hierarchies for shortest path

generation.

2.3 Bi-level traffic assignment

The traffic assignment problem is primarily used in three main applications:

evaluating alternatives, highway design, and environmental assessment (Pedersen and

Samdahl, 1982; Easa, 1991). When several alternatives have to be evaluated, a bi-

level traffic assignment problem is generally necessary. Several examples of situations

that would warrant the need for a bi-level traffic assignment are provided below.

Tolling. Pigou (1924) and Knight (1924) were among the first to introduce

the concept of a congestion tax, laying the foundation for a vast body of literature on

congestion pricing, later popularized by Vickrey (1963, 1969). Tolling or congestion

pricing can be used to direct travelers towards system optima (Lindsey* and Verhoef*,
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2001; Boyles et al., 2020). De Palma and Lindsey (2011) discuss various strategies for

implementing congestion pricing. Beyond guiding users toward the system optimum,

tolling can serve several other objectives. For instance, Li et al. (2008) present a Monte

Carlo optimization to determine optimal tolls to improve network reliability, Guo

and Xu (2016) explore a revenue-maximizing tolling strategy, and Robalino Muñoz

(2024) presents equitable tolling approaches. Algorithms to solve congestion pricing

problems generally employ a bi-level optimization with the higher level optimizing a

particular objective and the lower level solving for traffic assignment.

Network design. The goal of a network design problem is to determine the

best investment policy for improving transportation infrastructure. This may involve

enhancing certain links to increase capacity (Yang and Bell, 1998a) or, in other cases,

closing specific links to prevent Braess’s paradox-like scenarios (Korilis et al., 1999;

Yang and Bell, 1998b). It could also focus on lane management. For example, Ma

et al. (2004) employ a bi-level traffic assignment and genetic algorithm to find optimal

lane closures.

OD Matrix estimation. These problems focus on improving the OD matrix

obtained from a demand model. OD data from a demand model can sometimes

be erroneous and can be combined with flow data from sensors on links to improve

the quality of OD data. There are several approaches for OD matrix estimation.

Willumsen (1978) and Bera and Rao (2011) review the traditional and state-of-the-

art methods used for this purpose respectively. The general idea is to determine a

demand matrix such that, when used in a traffic equilibrium model, it produces link

flows that match observed sensor data on specific links (Boyles et al., 2025). The

problem can be solved heuristically or using a bi-level optimization, both requiring

multiple runs of the traffic assignment problem. Yang (1995) reviews several heuristic

algorithms for OD matrix estimation.

Network repair. These models deal with finding the optimal strategy to

recover a network post-disruption. Rey and Bar-Gera (2020) identify the optimal
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sequence in which network recovery tasks should be performed to minimize the total

system travel time while Gokalp et al. (2021) identify the sequence in which links

should be repaired that minimizes travel cost during the repair horizon. Crocker

(2024) presents algorithms to find optimal sequencing of repair on a large number

of broken links in both single-crew and multiple-crew settings. All these algorithms

require multiple solutions to the traffic assignment problem under different scenarios.

2.4 Convergence and bounds in traffic assignment problems

There have been several studies on the convergence of traffic assignment prob-

lems. Mounce and Carey (2015) show that the method of successive averages con-

verges to the equilibrium solution and provide the conditions for a dynamic system

(like traffic assignment) to converge to equilibrium when discrete steps are taken.

Rose et al. (1988) present the factors determining the magnitude of convergence er-

rors in the Frank-Wolfe algorithm. They argue that it is important to use different

stopping criteria based on network configurations and that there is a need for more

research in this direction.

Boyce et al. (2004) claim a relative gap of 10−4 is required to stabilize link

flows. However, the authors point out that the results are only for one network

and one demand scenario. Patil et al. (2021) provide a more detailed analysis of the

convergence of several aggregate metrics in static traffic assignment. They show more

aggregate metrics stabilize at higher relative gap values. For instance, they show total

system travel cost and vehicle miles traveled stabilize at around 10−4 relative gap,

link flows stabilize around 10−5 relative gap, while path flows around 10−6. They

also claim the results are similar across TAPAS and Algorithm B. The authors pose

a major limitation of the study as the results presented are purely empirical and not

from a theoretical perspective.

Several studies that aim to establish theoretical bounds on various variables

and metrics related to traffic assignment have been presented in the literature. Rough-
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garden (2005) presents upper bounds on the price of anarchy, which is defined as the

ratio of the total system travel cost at equilibrium to that at the social optimum.

Additionally, Roughgarden (2002) shows that the price of anarchy is independent of

network topology.

There have been several applications of the price of anarchy in transportation,

such as Zhang et al. (2018) and Lazar et al. (2018). Furthermore, studies have

explored bounding the price of anarchy in stochastic user equilibrium (Guo et al.,

2010). Guo et al. (2010) explain that in stochastic traffic assignment, two types of

system optima exist: a deterministic system optimum for the entire network and

a stochastic system optimum that accounts for perceived travel times. The study

provides bounds for both.

Various strategies have been used in nonlinear optimization to derive error

bounds. For instance, Zhou and So (2017) provide techniques to develop error bounds

for structured convex optimization problems, where the objective is the sum of a

smooth convex function and a closed proper convex function. Such bounds can be

used for many constrained minimization problems. Additionally, Facchinei and Pang

(2003) present several error bounds in the context of variational inequalities.

2.5 Summary

This chapter reviewed the traffic assignment problem in Section 2.1 and stochas-

tic traffic assignment in Section 2.2. Additionally, we discussed several applications

that require multiple runs of a traffic assignment problem in Section 2.3, includ-

ing congestion pricing, network design, OD matrix estimation, and network repair.

Several studies that address each of these problems were reviewed. Most of these

solution methods rely on bi-level optimization with traffic assignment at the lower

level or heuristics that require multiple runs of the traffic assignment problem.

In Section 2.4, we reviewed studies on the convergence of traffic assignment

problems. Works by Boyce et al. (2004) and Patil et al. (2021) propose stopping
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criteria for different metrics and observe that different metrics stabilize at different

gap measures depending on their level of aggregation. However, both studies are

purely empirical and lack a theoretical background.

Furthermore, we discussed how theoretical bounds on specific equilibrium

properties have led to widespread applications in transportation research. We further

discussed several strategies to derive bounds in non linear convex optimization in

Section 2.4. Since stochastic user equilibrium enjoys several mathematical properties

as outlined in Chapter 1, a natural research direction is to establish a theoretical

background for the empirical convergence measures proposed by Boyce et al. (2004)

and Patil et al. (2021), forming the basis of this thesis.
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Chapter 3: Background

This chapter provides a detailed description of SUE, outlines its mathematical

properties, and introduces the necessary mathematical background for this thesis.

Unlike DUE, where all users have perfect knowledge of travel costs, SUE accounts for

users’ imperfect perception of travel costs. In SUE, users minimize their perceived

travel costs between their origin and destination rather than the actual travel costs.

Thus, SUE allows for the modeling of perception errors between actual travel costs

and the cost a user believes to be actual. An alternative interpretation of users’

imperfect perception of travel costs can be thought of as that users may, in fact,

have perfect knowledge of travel costs, but the perception error accounts for factors

other than travel costs alone. These may include attributes such as road quality or

personal preferences not explicitly captured in the travel cost. To formally describe

SUE, we first specify how these perception errors are distributed. In this study,

we assume a logit choice model to represent these errors, which is further explained

in Subsection 3.1. Subsection 3.2 then defines some mathematical properties for

SUE under the logit choice model. Finally, Subsection 3.3 presents the necessary

mathematical background required for developing the key results of this thesis.

This thesis uses the following notation convention. Vector-valued functions

are denoted using calligraphic letters (e.g., Y), and scalar-valued functions are repre-

sented by lowercase Greek letters (e.g., γ). Sets are denoted using outlined Roman

symbols (e.g., Y). Vectors are represented by bolded lowercase Roman letters (e.g.,

y), while matrices are denoted by bolded uppercase Roman letters (e.g., Y). Scalars

are indicated using Roman letters (e.g., Y or y). The ith component of a vector is

written as yi, while the (i, j)th component of a matrix is denoted by Yij. Different

instances of a vector are distinguished using superscripts, such as y(1) and y(2). The

only exception to this convention is π, which is used to denote a path. The notation

introduced in this chapter and throughout the thesis is summarized in Table 3.1.
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Symbol Definition

Sets:
l ∈ L Set of links (a) in the network

π ∈ POD Set of paths (π) between origin O and destination D
hπ ∈ HOD Set of path flows (hπ) between origin O and destination D
Vectors:
ai, al ∈ a Vector of link flows (i: index; l: link)
pi, pπ ∈ p Vector of probabilities of choosing a path (i: index; π: path)
ci, cπ ∈ c Vector of generalized costs of choosing a path (i: index; π: path)
hi, hπ ∈ h Vector of path flows (i: index; π: path)

ĥi, ĥπ ∈ ĥ Vector of SUE path flows (i: index; π: path)
Scalars:

θ Logit parameter
dOD Demand between origin O and destination D
Lγ Lipschitz constant for function γ(.)

Matrices:
A,B Generic matrices
D Link path incidence matrix

Scalar-valued functions:
γ(.) : R→ R Generic scalar-valued function
τ(al) : R→ R Link cost of link l with flow al

Vector-valued functions:
F(.) : Rm → Rn Generic vector-valued function
C(h) : Rn → Rn Function that outputs cost vector for path flow vector h
P(c) : Rn → Rn Function that outputs path-choice probability vector for path cost vector c
H(c) : Rn → Rn Function that outputs target path flow vector for cost vector c
L(h) : Rn → Rn The logit mapping (H ◦ C) function
T(a) : Rm → Rm Function that outputs a vector of link travel times on link with flow a

Matrix-valued functions:
C′(h) : Rn → Rn×n First total derivative of C(h)
P′(c) : Rn → Rn×n First total derivative of P(c)
H′(c) : Rn → Rn×n First total derivative of H(c)
L′(h) : Rn → Rn×n First total derivative of L(h)

Table 3.1: Summary of notation used in this thesis.

3.1 Logit choice model

The logit choice model is a discrete choice model that can be formulated as

follows. For each user traveling from origin O to destination D, define POD as the set

of acyclic paths connecting O to D. Each path π ∈ POD is associated with a utility

value uπ representing the level of satisfaction the user derives from choosing that
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path. The discrete choice model assumes the user chooses the path that maximizes

their utility uπ. This utility uπ can be expressed as a sum of two components: the

observable part vπ and the unobservable part eπ

uπ = vπ + eπ. (3.1)

The observed utility, vπ is the portion of the utility visible to the modeler. In

our case, we assume it to be the negative generalized travel cost (−cπ) for path π.

The generalized travel cost is a weighted sum of several factors, such as travel time,

tolls, and other monetary costs, all converted into time units using the time value of

money. Since a higher cost gives lower utility to a user, we introduce a negative sign.

The unobserved utility, eπ consists of factors that are not explicitly modeled.

These might include either user perception errors or factors such as road quality

that are not captured by the generalized cost function. Since we do not exactly

know eπ, we model it as a random variable to represent user choices probabilistically.

In the logit choice model, we assume eπ is independent across paths π and has a

Gumbel distribution with zero mean and identical variance. Under this assumption,

the probability of choosing a path π is given by

pπ =
exp(−θcπ)∑

π′∈POD
exp(−θcπ′)

, (3.2)

where θ is a nonnegative parameter chosen to capture the relative importance of the

observed and unobserved utility.

3.2 Mathematical properties of SUE

We now introduce relevant notation and explain the mathematical properties

of SUE. We denote a path by π and its flow by hπ. The demand between an origin

O and a destination D is denoted by dOD. Let HOD denote the set of feasible path

flows between O and D, defined as

HOD =

{
hπ

∣∣∣∣∣ ∑
π∈POD

hπ = dOD, hπ ≥ 0 ∀π ∈ POD

}
. (3.3)
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We denote the set of links in the network by L, where each link is represented

by l. The vector of link flows is denoted by a, where al is the link flow on link l. The

link-path incidence matrix is denoted by D and is defined as

Dij =

{
1, if link i is part of path j,

0, otherwise.
(3.4)

Similarly, the link-path incidence matrix for an origin-destination pair OD,

DOD, is defined as

(DOD)ij =

{
1, if link i is part of path j in that OD pair,

0, otherwise.
(3.5)

Let P(c) denote the vector function given by (3.2), which takes in a vector of

path costs c and outputs the probability of choosing the corresponding paths as a

vector p, written as

p = P(c) . (3.6)

The target flow on a given path hπ is then determined in terms of the path

cost vector c as

hπ = dODpπ = dOD
exp(−θcπ)∑
π′ exp(−θcπ′)

, (3.7)

where cπ are the components of the cost vector c. We define H(c) as the vector

function corresponding to (3.7), which takes in a vector of path costs c and outputs

the paths the users would choose, represented as

h = H(c) . (3.8)

We refer to this as the “target” function because it describes what the path flows

should be for a given vector of path costs.

Path costs are calculated through network loading. If a is the vector of link

flows, T(a) represents the vector of link performance functions, and D is the link-path
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incidence matrix, then

c = DTT(a) = DTT(Dh) . (3.9)

We use C(h) to denote the vector function given by (3.9), which takes a set of

path flows h and outputs the corresponding path costs as c, expressed as

c = C(h) . (3.10)

We denote the vector of equilibrium path flows by ĥ. The stochastic user

equilibrium can be formulated as the solution to the fixed-point problem: ĥ = H ◦

C(ĥ), for each OD pair. We denote the composite function H ◦ C as L and refer to

L(h) as the logit mapping function. Since L is the composition of continuous and

differentiable functions, it is itself continuous and differentiable.

It is well known that stochastic user equilibrium exists and is unique under

mild conditions and can be expressed as the minimum point of a strictly convex func-

tion (Boyles et al., 2025). The logit mapping ensures that the path flow equilibrium

solution is unique as well. While general algorithms exist for solving nonlinear op-

timization formulations such as the one for SUE, practical road networks introduce

tens of thousands of constraints, making direct optimization approaches computa-

tionally infeasible. Hence, specialized methods that explore the graph structure are

commonly employed. In this thesis, we adopt the MSA algorithm, as outlined in Al-

gorithm 1, to solve for SUE. As demonstrated by Bar-Gera and Boyce (2006), MSA

performs considerably well with constant step sizes when target flows are continuous

on current flows, as in the case of SUE with logit mapping. We include a comparison

of different step size rules in Chapter 5. Further, the main goal of this thesis is to

validate our bounds rather than prioritize computational efficiency, making MSA a

reasonable choice for solving SUE in our case.
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Algorithm 1 Method of successive averages

Initialization: Set the current path flows hcurrent and target path flows htarget to the
path flows at free flow conditions.
Set j = 1
for iteration j do

(a) Choose a step size s ∈ [0, 1].
(b) Update the current path flows for each OD pair as

hcurrent = (1− s)hcurrent + shtarget.

(c) Compute the updated path costs using the network loading equation (3.9) for
each OD pair.
(d) Update the target path flows using equation (3.8) for each OD pair.
(e) If hcurrent and htarget are sufficiently close then terminate, else j ← j + 1.

end

3.3 Mathematical background

We now present the necessary mathematical background for developing the

main results of this thesis. We review the total derivative of vector-valued functions,

Taylor’s theorem, the mean value theorem, key matrix norms, and several vector and

matrix inequalities used in our analysis.

Let F : Rn → Rm be a differentiable function. The Jacobian, or first total

derivative, of F at a point x ∈ Rn is defined as the m×n matrix of first-order partial

derivatives:

F′(x) =


∂F1

∂x1
· · · ∂F1

∂xn
...

. . .
...

∂Fm

∂x1
· · · ∂Fm

∂xn

 . (3.11)

For higher-order derivatives, we consider functions F : Rn → R that are k-

times continuously differentiable (Ck). The Hessian matrix F′′(x) is the second-order

derivative given by

F′′(x) =
[

∂2F
∂xi∂xj

]
i,j
. (3.12)
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For vector-valued functions in several variables, F : Rn → Rm, higher-order

derivatives are represented by tensors. For example, the second-order derivative of

each component of F corresponds to a Hessian matrix. Whenever higher-order deriva-

tives of a function of several variables are needed in our analysis, we use Cauchy’s

estimate (Theorem 1) to estimate their norm. See Gamelin (2003) for a proof for

Theorem 1.

Theorem 1 (Cauchy’s Estimates). Suppose f is holomorphic on a neighborhood of

the closed ball B(z∗, R), and suppose that

m := max{|f(z)| : |z − z∗| = r}, (m <∞). (3.13)

Then ∣∣f (n)(z∗)
∣∣ ≤ n!m

rn
. (3.14)

Throughout this thesis, we assume that all cost functions are holomorphic,

allowing us to apply Theorem 1. In practice, most link performance functions and

generalized cost functions are holomorphic. In particular, all polynomials are holo-

morphic. The Bureau of Public Roads (BPR) function (Bureau of Public Roads,

1964), commonly used to calculate travel times, is a polynomial function and is there-

fore holomorphic. We now state two theorems that we will extensively use throughout

the thesis. Theorem 2 is taken from Fusco et al. (2023) and Theorem 3 is taken from

Apostol and Ablow (1958).

Theorem 2 (Taylor’s theorem with remainder in several variables1). Let F : Rn → R

be a function that is (k + 1) times continuously differentiable in a neighborhood of

a ∈ Rn. Then, for x close to a, F(x) can be expressed as

1The multi-index notation used in Theorem 2 were primarily taken from Folland (2005) and
Lindblad (2011).
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F(x) = F(a) +
n∑

i=1

Fxi
(a)(xi − ai) +

1

2

n∑
i,j=1

Fxixj
(a)(xi − ai)(xj − aj)

+ · · ·+ 1

k!

n∑
i1,...,ik=1

Fxi1
...xik

(a)(xi1 − ai1) · · · (xik − aik) + Rk(x− a, a),

(3.15)

where the remainder term satisfies the bound

∥Rk(x, a)∥ ≤
M

(k + 1)!
∥x− a∥k+1, (3.16)

provided that
n∑

i1,...,ik+1=1

∥Fxi1
...xik+1

(z)∥ ≤M, (3.17)

for all ∥z− a∥ ≤ ∥x− a∥. The higher-order derivatives are given by

Fxi1
...xik

=
∂kF

∂xi1 . . . ∂xik

. (3.18)

Theorem 3 (Mean value theorem for functions of several variables). If S ⊂ Rn is

an open set and F : S → Rm is differentiable, then for any two points x,y ∈ S such

that the line segment joining x and y is in S, there exists a point z(i) along the line

segment such that

Fi(y)− Fi(x) = (F′(z(i))(y − x))i. (3.19)

for each index i = 1, . . . ,m, where i represents the ith component of F.

Observe that the mean value theorem in several variables is the same as apply-

ing the mean value theorem in a single variable component-wise. Thus, the point z(i)

is different for each component. Further, the following lemma (Apostol and Ablow,

1958) is a direct consequence of Theorem 3.

Lemma 1. If S is a convex set, then the line joining x and y is in S for all x,y ∈ S,

ensuring that the mean value theorem holds globally within S.
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We now define Lipschitz continuity, which provides a bound on the rate of

change of a function. The following definition is taken from Courant et al. (1965).

Definition 3.1 (Lipschitz Continuity). A function F : Rn → Rm is Lipschitz contin-

uous on a set S ⊆ Rn if there exists a constant LF > 0 such that

|F(x)− F(y)| ≤ LF|x− y|, ∀x,y ∈ S. (3.20)

The smallest such constant LF is called the Lipschitz constant of F.

Next, we define two common norms in linear algebra: the spectral norm and

the Frobenius norm.

1. The spectral norm (Gentle, 2007) of an n× n matrix A is given by

∥A∥2 = sup
∥x∥=1

∥Ax∥2, (3.21)

where ∥A∥2 is thus the largest singular value of A. For all x ∈ Rn, the spectral

norm satisfies

∥Ax∥2 ≤ ∥A∥2∥x∥2. (3.22)

2. The Frobenius norm (Gentle, 2007) of an n× n matrix A is defined as

∥A∥F =

(
n∑

i,j=1

|aij|2
)1/2

. (3.23)

Furthermore, the spectral norm is bounded by the Frobenius norm as follows:

∥A∥2 ≤ ∥A∥F ≤
√
n∥A∥2. (3.24)

Finally, we present some commonly used matrix and vector inequalities (The-

orem 4–6) from Pugh and Pugh (2002).

33



Theorem 4 (Triangle inequality). For any vectors x,y in a normed vector space, the

norm satisfies the following triangle inequalities:

∥x+ y∥ ≤ ∥x∥+ ∥y∥, and (3.25)

∥x− y∥ ≥
∣∣∥x∥ − ∥y∥∣∣. (3.26)

Theorem 5 (Cauchy-Schwarz inequality). For any two vectors x and y in an inner

product space, the inner product satisfies the inequality:

|⟨x,y⟩| ≤ ∥x∥∥y∥. (3.27)

Theorem 6 (Sub-multiplicative norm inequality). Let ∥ · ∥ be a sub-multiplicative

norm on a space of matrices or operators, then for any two matrices A and B

∥AB∥ ≤ ∥A∥∥B∥. (3.28)

34



Chapter 4: Bound formulations

In this chapter, we outline our approach for deriving an upper bound on the

distance between any feasible path flow and the equilibrium flow. Upper bounds on

link flows and other aggregate metrics follow directly. Our goal is to express the

upper bound on the distance between current and equilibrium path flows in terms of

current path flows alone. To achieve this, we approximate the logit mapping to the

first order around the current path flows and then bound the resulting approximation

error.

We begin by analyzing the behavior of the Jacobian over the feasible set of

path flows in Section 4.1. We explicitly compute the Jacobian and outline some of

its mathematical properties. We also show that the Jacobian and higher derivatives

of the logit mapping are bounded under mild assumptions on link costs. Using this

knowledge of the derivatives of the logit mapping, we establish bounds on path flows

in Section 4.2. The bounds on path flows require two significant assumptions: the

cost functions are twice continuously differentiable (i.e., C2) and the Jacobian of

the logit mapping is invertible. To develop bounds on the distance of path flows

from equilibrium, we apply the mean value theorem component-wise along the line

connecting any feasible path flow solution and the equilibrium solution. The mean

value theorem guarantees the existence of a point along this line for each component.

We bound the distance from this point to the equilibrium solution using the exact

(Lagrange) form of Taylor’s theorem in several variables. We then exploit the fixed-

point properties of the stochastic user equilibrium (SUE) and employ several linear

algebra techniques to bound the distance from any feasible solution to the equilibrium

solution. We extend the bound on path flows to aggregate metrics such as link flows,

travel costs, and total system travel cost in Section 4.3. The bounds on link flows,

travel costs, and total system travel costs follow immediately from the bound on

path flows by applying matrix and vector inequalities. Finally, we show that the

35



bounds on distance of path flows, link flows, and travel cost from equilibrium are

tight for a network of parallel links with equal and constant cost functions in Section

4.4. Thus, the proposed bounds cannot be improved without additional information

on the network topology or problem instance. However, the proposed bound on the

distance of total system travel cost was found to be loose and in fact to never be tight

except at equilibrium for the same network.

4.1 Jacobian of the logit mapping

Recall the target path flows at h are given by the logit mapping, L(h). We

need to calculate the partial derivatives ∂Li

∂hj
to fill out the Jacobian. This is slightly

tricky because if we change just hj and no other path flow, we are also changing the

total demand. To be careful, we will re-specify the mapping L in a more general way

that allows dOD to vary and derive its Jacobian. The ith component of the Jacobian

can be computed as

L(h)i =
∑
j

hj ·
exp(−θci)∑
j exp(−θcj)

=
∑
j

hj · pi. (4.1)

We then re-specify H as

H(c) = H(h,p). (4.2)

Applying the chain rule, the Jacobian of L(h) = H(h,P(C(h))) with respect to h is

L′(h) = H′(h) +H′(p) · P′(c) · C′(h). (4.3)

Going through the calculus, we find each matrix as follows.

1. In H′(h), we treat p as constant and find that ∂Li

∂hj
= pi. The Jacobian H′(h)

is, therefore, a matrix where each row consists of the same value pi.

2. We calculate H′(p) to be a diagonal matrix with elements
∑

j hj (that is, the

current demand dOD).
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3. The elements of P′(c) are the sensitivities of the logit model with respect to

path costs. As computed in Koppelman and Bhat (2006), they are given by

(P′(c))ij =

{
−θ · pi · (1− pi) if i = j,

θ · pi · pj if i ̸= j.
(4.4)

4. Finally, we have the Jacobian of the path costs with respect to path flows C′(h);

the element in the i-th row and j-th column of C′(h) is the derivative of path i’s

cost with respect to flow on path j, which is the sum of the link cost derivatives

on the links belonging to both paths

∂Ci

∂hj

=
∑

l∈πi∩πj

τ ′(al), (4.5)

where τ(al) is the link cost of link l with flow al.

Given the description of the Jacobian, the following lemma immediately fol-

lows.

Lemma 2. The product of the Jacobian H′(h) and the difference of any two feasible

path flows in the same OD pair is zero.

Proof. The product of the Jacobian H′(h) with any vector h(1) can be calcu-

lated as follows. The i-th component of H′(h).h(1) is

(H′(h).h(1))i =
∑
j

pih
(1)
j = pi

∑
j

h
(1)
j = pi.dOD . (4.6)

Therefore, for any two feasible path flows h(1) and h(2) in the same OD pair,

H′(h) · (h(1) − h(2)) = dODp− dODp = 0.

We define

K(h) := H′(p) · P′(c) · C′(h). (4.7)
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Since the path costs c depend on the path flows h, and the probabilities p

depend on the path costs c, we can express K solely in terms of the path flows h.

This definition of K later simplifies our calculations, since

L′(h)(h(1) − h(2)) = H′(h)(h(1) − h(2)) +H′(p)P′(c)C′(h)(h(1) − h(2)) (4.8)

= H′(h)(h(1) − h(2)) +K(h)(h(1) − h(2)) (4.9)

= K(h)(h(1) − h(2)). (4.10)

Since our primary goal is to obtain a first-order expansion of the logit mapping

L, it is essential that the Jacobian of L is bounded. In fact, it suffices to show that

K is bounded. We present the following theorem to show that K is indeed bounded

in the set of feasible path flows under reasonable assumptions on link costs.

Theorem 7. Suppose the cost functions are in C1. Then, the difference
(

∂Ck

∂hj
− ∂Ci

∂hj

)
is bounded. Further, the function K(h) is bounded; i.e., there exist constants m0 and

m0 such that

(a) m0 ≤
(

∂Ck

∂hj
− ∂Ci

∂hj

)
≤ m0, and

(b) dODθm0 ≤ Kij(h) ≤ dODθm0.

Proof. We begin by analyzing component-wise. We look at the ith component

of K(h). The matrix H′(p) is diagonal with dOD as its diagonal elements. The ith

row of H′(p) contains dOD in the ith position and zeros elsewhere. When H′(p) is

multiplied by P′(c), this will pick up the ith column of P′(c). With some simple

algebraic simplifications, we can show that
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(K(h))i = (H′(p) · P′(c) · C′(h))i (4.11)

= dODθ
[
pip1 · · · −pi(1− pi) · · · p1pn

]
·


(C′(h))1
(C′(h))2

...
(C′(h))n

 (4.12)

= dODθ

n∑
k=1,k ̸=i

(pipk(C
′(h))k)− pi(1− pi) ((C

′(h))i) (4.13)

= dODθpi

n∑
k=1,k ̸=i

(pk(C
′(h))k)− pi(1− pi) ((C

′(h))i) (4.14)

= dODθpi

n∑
k=1,k ̸=i

(pk(C
′(h))k)− pi

(
n∑

k=1,k ̸=i

pk

)
((C′(h))i) (4.15)

= dODθpi

n∑
k=1,k ̸=i

(pk(C
′(h))k − (C′(h))i) (4.16)

= dODθpi

n∑
k=1,k ̸=i

(pk(C
′(h))k − (C′(h))i) (4.17)

The cost functions are assumed to be C1. Hence, the derivatives must be con-

tinuous. The feasible set of path flows is closed and bounded, hence compact. Con-

tinuous functions on compact sets are bounded. The difference of bounded functions

is also bounded. Hence there exists m0 and m0, such that m0 ≤
(

∂Ck

∂zj
− ∂Ci

∂zj

)
≤ m0

for all i, j, k. Further, the probabilities (pi) are always less than one. This completes

the proof.

As a consequence of Theorem 7, we can readily bound the higher-order deriva-

tives of K, which are necessary for estimating the error in the first-order approxima-

tion of the logit mapping. Since these higher-order derivatives are tensors, we apply

Cauchy’s estimates (Theorem 5) to bound their norm rather than computing them

explicitly. Lemma 3 computed these upper bounds.
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Lemma 3. Suppose the cost functions are twice continuously differentiable, then the

first derivative of K is bounded. i.e., there exists m1 such that

||K′(h)|| ≤ m1. (4.18)

Proof. The proof follows directly from Theorem 7 and from the fact that the

domain for feasible path flows is compact. Since the cost functions are assumed to

be twice continuously differentiable, we know there exists some m1 such that

∥K(n)(h)∥ ≤ m1. (4.19)

If we assume the cost functions are holomorphic, then m1 can be computed us-

ing Cauchy’s estimates (Theorem 1). We clarify the meaning of ∥K(1)(h)∥ in this con-

text. K(h) is a product of three n×n Jacobian matrices as defined in Equation (4.7).

The derivatives of K(h) consist of multiple Hessian matrices, one corresponding to

each component row of K(h). The notation ∥K′(h)∥ refers to the maximum of all

such bounds on each of these Hessian matrices.

4.2 Bounds on path flows

This section presents the first key result of this thesis. Theorem 8 establishes

an upper bound on the distance between current path flows and equilibrium path

flows. To derive this bound, we use our understanding of the Jacobian and its higher-

order derivatives, along with the results from the previous section. The derivation

in this section follows some concepts from Bar-Gera and Boyce (2006) and the fixed

point property of SUE described in Section 3.2.

Theorem 8 (Local Bound). Suppose the cost functions are C2. Then, for any rOD ∈

[0, 1), there exists constants m1,m2, and eh such that for all feasible path flows hOD

in an origin-destination (OD) pair satisfying ∥hOD − ĥOD∥ ≤ eOD
hr , the norm of

the difference between the current and equilibrium path flows is bounded by a factor
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depending only on the current path flows, i.e., ∥ĥOD−hOD∥ ≤MOD
hr ∥L(hOD)−hOD∥,

where

(i) MOD
hr = ∥(I −K(hOD))

−1∥ 1
1−rOD

,

(ii) eOD
hr = rOD

∥(I−K(hOD))−1∥(m1+m2)
.

Proof. For brevity, we will omit the subscript and superscript OD in the rest

of the proof when not necessary. Given any two feasible path flows h, ĥ ∈ HOD ⊂ Rn,

where HOD is convex, the line segment connecting h and ĥ is contained within HOD.

Since L is differentiable on HOD (by Theorem 7), applying the mean value theorem

(Theorem 3) component-wise, there exists a point h(i) along the line segment joining

h and ĥ such that

{Li(ĥ)− Li(h)} = ({L′(h(i))(ĥ− h)})i. (4.20)

Since the SUE path flows are a fixed point to the logit mapping, it follows that

L(ĥ) = ĥ. (4.21)

Using Equation (4.20) and substituting for L(ĥ) using (4.21) it follows

{Li(ĥ)− Li(h)} = {L′(h(i))(ĥ− h)}i and (4.22)

{ĥi − Li(h)} = {K(h(i))(ĥ− h)}i. (4.23)

Equation (4.23) follows from Lemma 2 and Equation (4.10). Observe that Equation

(4.23) is a scalar equation, as we are considering only the ith component of the vectors.

This equation depends on the current (h) and equilibrium (ĥ) path flows, except for

h(i), which lies along the line segment connecting h and ĥ. Therefore, if we can

bound the difference between h(i) and h, we obtain the desired bound. We define

Wi(h
(i)) = K(h(i))(ĥ− h)i for each component i. We then approximate Wi(h

(i))

around h using a first-order Taylor expansion as

Wi(h
(i))−Wi(h) = W′

i(h)(h
(i) − h) +R2(h

(i)), (4.24)
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where R2(h
(i)) is a second-order term that grows with ∥h(i)−h∥2. Equation (4.24) rep-

resents the exact form of the first-order Taylor expansion (Theorem 2) applied to Wi.

Taking the norm on both sides of Equation (4.24) and applying the sub-multiplicative

norm inequality (Theorem 6) along with the triangle inequality (Theorem 4), we ob-

tain

|Wi(h
(i))−Wi(h)| ≤ ∥W′

i(h)(h
(i) − h)∥+ ∥R2(h

(i))∥. (4.25)

With some linear algebra, we obtain

|Wi(h
(i))−Wi(h)| ≤ ∥W′

i(h)∥∥h(i) − h∥+m2∥h(i) − h∥2 (4.26)

≤ ∥W′
i(h)∥∥ĥ− h∥+m2∥ĥ− h∥2 (4.27)

≤ ∥K′(h(i))∥∥(ĥ− h)∥2 +m2∥ĥ− h∥2 (4.28)

≤ m1∥ĥ− h∥2 +m2∥ĥ− h∥2. (4.29)

Inequality (4.26) follows from the Cauchy–Schwarz inequality (Theorem 5)

and the bound on the second-order Taylor remainder (Theorem 2). Inequality (4.27)

uses the fact that h(i) lies between h and ĥ. Inequality (4.28) follows from the

definition of W and another application of the Cauchy–Schwarz inequality. Finally,

Inequality (4.29) follows from Lemma 3. Thus, as a consequence of Equation (4.23)

and Inequality (4.29), we obtain the following:

• {ĥi − Li(h)} = {K(h(i))(ĥ− h)}i (Equation (4.23)) and,

• |K(h(i))(ĥ− h)i −K(h)(ĥ− h)i| ≤ (m1 +m2)∥ĥ− h∥2 (Equation (4.29)).

Combining the two equations yields

|ĥi − Li(h)− {K(h)(ĥ− h)}i| ≤ (m1 +m2)∥ĥ− h||2. (4.30)

Since Equation (4.30) applies component-wise, we can combine all the components

to get the vector equation

∥ĥ− L(h)−K(h)(ĥ− h)∥ ≤ (m1 +m2)∥ĥ− h||2. (4.31)

or, ∥(L(h)− h)− (I−K(h))(ĥ− h)∥ ≤ (m1 +m2)∥ĥ− h||2, (4.32)
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where I denotes the identity matrix. Equation (4.32) follows directly from Equation

(4.31) via elementary algebraic manipulations. Next, we multiply both sides by ∥(I−
K(h))−1∥ and apply the sub-multiplicative norm inequality (Theorem 6), yielding

∥(I−K(h))−1(L(h)− h)− (ĥ− h)∥

≤ ∥(I−K(h))−1∥ · ∥(L(h)− h)− (I−K(h))(ĥ− h)∥

≤ (m1 +m2)∥(I−K(h))−1∥ · ∥ĥ− h||2. (4.33)

Applying the triangle inequality (Theorem 4) and the Cauchy-Schwarz inequality

(Theorem 5) to (4.33), we obtain

|∥(I−K(h))−1∥∥(L(h)− h)∥ − ∥(ĥ− h)∥|

≤ (m1 +m2)∥(I−K(h))−1∥ · ∥ĥ− h||2. (4.34)

Finally, by eliminating the absolute difference, we get

∥(ĥ− h)∥ − ∥(I−K(h))−1∥∥(L(h)− h)∥

≤ (m1 +m2)∥(I−K(h))−1∥ · ∥ĥ− h||2. (4.35)

Observe that Inequality (4.35) involves only current and equilibrium path

flows. If h is sufficiently close to ĥ, we can assume ∥ĥ− h∥2 ≈ 0, thereby providing

the required bound. We now formalize this argument mathematically.

For any given r ≥ 0, we define ehr as

ehr =
r

∥(I−K(h))−1∥(m1 +m2)
. (4.36)

This allows us to linearize the quadratic ∥ĥ− h∥2 term in Inequality (4.35). For any

feasible path flow, h satisfying ∥ĥ− h∥ ≤ ehr we have

∥(I−K(h))−1∥(m1 +m2)∥ĥ− h∥2 ≤ r∥ĥ− h∥. (4.37)

Substituting Inequality (4.37) into Inequality (4.35), we derive

∥(ĥ− h)∥ − r∥ĥ− h|| ≤ ∥I−K(h))−1(L(h)− h)∥. (4.38)
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Rearranging Inequality (4.38) and applying the sub-multiplicative norm inequality,

we derive the result

∥(ĥ− h)∥ ≤ ∥(I−K(h))−1∥
1− r

∥(L(h)− h)∥. (4.39)

This concludes the proof.

Before proceeding to provide bounds on aggregate metrics, we develop an

intuition for the values of r. The bound in (4.39) applies for any value of r ∈ [0, 1)

as long as ∥ĥ − h∥ ≤ ehr. The parameter r controls how far from equilibrium the

bounds begin to hold. Note that from the definition of ehr in (4.36) that for larger

values of r, the bound applies from a greater distance from equilibrium but tends

to be weaker. Conversely, for smaller r, the bound holds closer to equilibrium and

becomes tighter. At equilibrium, the bound is tight with the parameter r set to zero.

0-200 200

-200

200

(a) r = 0.1

0-200 200

-200

200

(b) r = 0.5

0-200 200

-200

200

(c) r = 0.9

Figure 4.1: Linearizing technique: Red shading shows x ≤ 0.5y + 0.01x2 and the
green shading shows x ≤ 0.5

1−r
y.

A simpler illustration of the intuition behind the linearizing technique used

in Equations (4.36)–(4.39) is provided in Figure 4.1. Figure 4.1 shows the quadratic

inequality x ≤ 0.5y + 0.01x2 being approximated by the linear inequality x ≤ 0.5
1−r

y.

The three subfigures demonstrate that as x approaches zero, the linear approximation

improves but holds for a smaller range of values. For instance, when r = 0.1, the linear
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approximation (shown in green) closely matches the quadratic inequality (shown in

red), but it remains valid only up to x = 18. Beyond x = 18, the linear approximation

no longer holds, as indicated by the red shaded region not covered by the green region.

On the other hand, when r = 0.9, the bound holds more loosely (as seen in the green

region not overlapping with the red region), but it remains valid up to x = 90.

In the example shown in Figure 4.1, x corresponds to ∥ĥ − h∥, and y cor-

responds to ∥L(h) − h∥. Since these are positive quantities, we are only interested

in the first quadrant of these plots. Consequently, as r approaches one, the linear

approximation holds true for the entire region. However, in this case, 1
1−r

becomes

extremely large, making the bound too loose to be useful. Therefore, choosing an

appropriate value of r is crucial. Further analysis on the parameter r is provided in

Chapter 5.

4.3 Bounds on aggregate metrics

The bounds on link flow and travel cost follow directly from Theorem 8. To

simplify notation, we denote ∥ĥOD − hOD∥ as ∥ĥ − h∥OD. The following lemma

presents the results on bounds on aggregate metrics.

Lemma 4 (Bound on link flows and travel time). Suppose the conditions of Theorem 8

hold, with

∥ĥ− h∥OD ≤MOD
hr ∥L(h)− h∥OD, (4.40)

and that the travel cost functions have bounded derivatives, are Lipschitz continuous,

and there are no link interactions. Then the following holds:

(a) Bound on link flows:

∥a− â∥ ≤
∑
OD

∥DOD∥MOD
hr ∥L(h)− h∥OD. (4.41)
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(b) Bound on travel cost:

∥T(a)− T(â)∥ ≤ LT

∑
OD

∥DOD∥MOD
hr ∥L(h)− h∥OD, (4.42)

where LT is the Lipschitz constant for the function T.

Proof. We begin by expressing the norm of the difference between a and â in

terms of path flows using the link path incidence matrix D

∥a− â∥ =

∥∥∥∥∥∑
OD

DODh−
∑
OD

DODĥ

∥∥∥∥∥ (4.43)

=

∥∥∥∥∥∑
OD

DOD(h− ĥ)

∥∥∥∥∥ . (4.44)

Applying the triangle inequality and sub-multiplicative norm inequality, we obtain∥∥∥∥∥∑
OD

DOD(h− ĥ)

∥∥∥∥∥ ≤∑
OD

∥∥∥DOD(h− ĥ)
∥∥∥ (4.45)

≤
∑
OD

∥DOD∥ · ∥h− ĥ∥OD. (4.46)

Finally, we invoke Theorem 8 to get the result∑
OD

∥DOD∥ · ∥h− ĥ∥OD ≤
∑
OD

∥DOD∥ ·MOD
hr ∥L(h)− h∥OD.

To bound the travel costs, we employ a similar set of steps with the additional

assumption that the travel cost function, T, is Lipschitz continuous with Lipschitz

constant LT. This implies

∥T(a)− T(â)∥ = ||T(
∑
OD

DOD)h− T(
∑
OD

DODĥ)|| (4.47)

≤ LT

∑
OD

∥DOD∥.MOD
hr ∥L(h)− h∥OD. (4.48)

This completes the proof.
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If we assume that the travel cost functions follow BPR (Highway Capacity

Manual, 2000) functions and link flow cannot exceed its capacity, we can compute

the Lipschitz constant LT directly. Since BPR functions have bounded derivatives,

we can use the fact that an everywhere differentiable function γ : R→ R is Lipschitz

continuous with Lipschitz constant given by sup |γ′(x)|. Suppose the cost of link l is

given by

τl(a) = ul ·
(
1 + f

(
a

cl

)g)
+ hTl, (4.49)

where ul is the free-flow travel time of link l, cl is its capacity, f and g are parameters

of the BPR function, h is the time value of money, and Tl is the toll on that link. To

compute the Lipschitz constant, we take the derivative with respect to a as τ ′l (a) =

ul · f · g · c−g
l · ag−1. Since the Lipschitz constant is defined as LT = supa≥0 |τ ′l (a)|, we

obtain,

LT = sup
a≥0

∣∣ul · f · g · c−g
l · a

g−1
∣∣ . (4.50)

For g > 1, the supremum occurs at the maximum feasible flow, which is capacity

(a = cl), giving

LT = max
l

(
fgul

cl

)
= fgmax

l

(
ul

cl

)
. (4.51)

Lemma 5 (Bound on total system travel time). Suppose the conditions of Theorem 8

holds, i.e.,

∥ĥ− h∥OD ≤MOD
hr ∥L(h)− h∥OD, (4.52)

and that the travel cost functions have bounded derivatives, are Lipschitz continuous,

and there are no link interactions. Then the following upper bound exists on total

system travel time:

T(â) · â ≤ (∥a∥+ML)(∥T(a)∥+ LTML). (4.53)

Here,

ML =
∑
OD

∥DOD∥ ·MOD
hr ∥L(h)− h∥OD. (4.54)
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Proof. We know from Lemma 4

∥a− â∥ ≤ML, =⇒ ∥â∥ ≤ ∥a∥+ML (4.55)

and ∥T(a)− T(â)∥ ≤ LTML =⇒ ∥T(â)∥ ≤ ∥T(a)∥+ LTML. (4.56)

Combining inequalities (4.55) and (4.56) and using the Cauchy-Schwarz in-

equality and the fact that total system travel cost is always nonnegative, we get

T(â) · â ≤ ∥â∥∥T(â)∥ ≤ (∥a∥+ML)(∥T(a)∥+ LTML). (4.57)

This completes the proof.

4.4 Tightness of the proposed bounds

We now demonstrate that the derived bounds on path flows (in Theorem 8),

link flows in (Lemma 4a), and travel cost (in Lemma 4b) are always tight for a network

of parallel links for any globally feasible solution. Further, the bound on total system

travel cost (in Lemma 5) is never tight for this network unless at equilibrium.

O D
.
.
.

𝜏 𝑎1 = 𝑐

𝜏 𝑎2 = 𝑐

𝜏 𝑎𝑛 = 𝑐

𝑑 𝑑

Figure 4.2: Network of parallel links.

Consider a network with one OD pair and n parallel links, all having equal

and constant cost functions τ(al) = c as shown in Figure 4.2. Then C′(h) = 0, by
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Equation (4.5) and consequently K(h) is also a zero matrix by Equation (4.7). Take

r = 0 for the tightest bound. Hence, Mhr in Theorem 8 is one. For any path flow h,

observe L(h) = ĥ = [d/n, . . . d/n]. Hence ∥ĥ− h∥ = Mhr∥L(h)− h∥. Therefore, the

bound in Theorem 8 is tight for any path feasible flow in this network.

Observe that the link path incidence matrix is an identity for the same network.

Hence, ∥D∥ = 1 in Lemma 4. The link flows and path flows are the same for

this network. Thus, ∥a − â∥ =
∑

OD ∥DOD∥MOD
hr ∥L(h) − h∥OD = ∥L(h) − h∥,

showing that the bounds in Lemma 4(a) hold with equality for this network for any

feasible link flow. Constant functions have a Lipschitz constant of zero, and hence

∥T(a)− T(â)∥ ≤ LT

∑
OD ∥DOD∥MOD

hr ∥L(h)−h∥OD = 0, showing that the bound in

4(b) holds with equality for any feasible solution.

For any path flows h, the total system travel cost is the same as demand times

the constant travel time, i.e., â.T(â) = a.T(a) = cd. We showed ML in Lemma 5

is ∥L(h) − h∥. Hence, the bound on total system travel cost is never tight for this

network, as the upper bound in Lemma 5 always exceeds cd, except when Ml = 0,

which happens only at equilibrium.
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Chapter 5: Results

The bounds derived in Chapter 4 were tested on real-world transportation

networks. All experiments were run in Python 3.12.5 and on an Apple MacBook Air

with an M2 chip, an 8-core CPU, an 8-core GPU, and 16 GB of unified memory.

We tested the derived bounds on the Sioux Falls, Berlin-Mitte-Center, Anaheim, and

Eastern Massachusetts networks. The data required for these networks, including

network structure and demand, is publicly available at Transportation Networks for

Research Core Team (2025). Table 5.1 provides a summary of these networks.

Network OD pairs Links Nodes Total demand

Sioux Falls 242 76 24 360600.0
Berlin-Mitte-Center (BMC) 362 871 398 11481.9
Eastern-Massachusetts (EMA) 742 258 74 65576.4
Anaheim 382 914 416 10469.4

Table 5.1: Networks used in the study.

The method of successive averages (Algorithm 1) was used to solve for SUE.

As discussed in Chapter 3, the continuous nature of the logit mapping allows MSA

to be used with a constant step size. In fact, with appropriate adjustments, using a

constant step size can lead to much faster convergence to SUE compared to using a

reciprocal iteration number as a step size. The step size selection strategy used in our

implementation of MSA is outlined in Algorithm 2. A FIFO queue is used to track

the last three gap values. For the first ten iterations, we reduce the step size as the

reciprocal of the iteration number. Thereafter, a constant step size is used until the

gap function reduces by more than 1% in the last three iterations. In case it doesn’t,

the step size is reset to the reciprocal of the iteration number.

50



Algorithm 2 Step size selection

Input: i (iteration number), g (FIFO list of last 3 gap values)
Output: s (step size for iteration i)

1 if i ≤ 10 then
2 s← 1/i
3 else

4 if |g2−g0|
g0

< 0.01 then

5 s← 1/i

The gap function was chosen to be the difference between current and target

path flows, i.e., ∥h − L(h)∥. The proposed step size selection rule results in signifi-

cantly faster convergence compared to the traditional approach of setting the step size

as the reciprocal of the iteration number. A comparison is provided in Table 5.2. In

Table 5.2, “Rule 1” refers to step size set as the reciprocal of iteration count, whereas

“Rule 2” refers to step size determined by Algorithm 2. A maximum of ten minutes

was provided to the MSA algorithm to converge with either step size selection rule.

If MSA failed to converge to the specified gap within ten minutes, it is indicated

by a “−” in Table 5.2. As shown in Table 5.2, “Rule 2” demonstrates remarkably

faster convergence than “Rule 1.” Due to the computational performance produced

by constant step sizes, all our tests were performed using Algorithm 2.

Gap Sioux Falls BMC EMA Anaheim

∥h− L(h)∥ Rule 1 Rule 2 Rule 1 Rule 2 Rule 1 Rule 2 Rule 1 Rule 2

10000 11.1 4.7 13.5 13.5 55.8 54.4 132.4 107.7
1000 104.5 8.5 134.7 115.6 574.1 163.4 - 284.2
100 - 12.4 - 264.5 - 272.3 - 452.9
10 - 16.2 - 413.9 - 376.0 -
1 - 20 - 562.7 - 490.6 - -

Table 5.2: Computation time (in seconds) to reach desired gap level using Rule 1 and
Rule 2 for step size selection across different networks. Rule 1 sets step size as the
reciprocal of iteration, while Rule 2 sets step size as per Algorithm 2. “-” means gap
value was not achieved in 10 min timespan.
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In all our experiments, the equilibrium solution was assumed to be the first

path flow solution satisfying ∥h−L(h)∥ ≤ 1. The path set for each OD pair was taken

as the ten shortest paths within that OD pair, and the logit parameter (θ) was fixed

at 0.5. The initial solution in all experiments was assumed to be path flow given by

logit network loading at free flow. Table 5.3 provides the time to calculate the bounds.

Table 5.3 mentions the time for each iteration of MSA with and without calculating

the bounds. The time to calculate with bounds includes the time to calculate path

flow bounds on all OD pairs, the bounds on link flows, travel cost, and the total

system travel cost for each iteration.

Network
Time without

bounds
Time with
bounds

Time to calculate
bounds

Sioux Falls 0.18 0.25 0.07
BMC 6.71 7.08 0.37
EMA 4.95 5.24 0.29
Anaheim 7.56 8.08 0.52

Table 5.3: Computation times (in seconds) for different networks with and without
bounds. (Times in an average of first five iterations.)

The bounds on path flows derived in Theorem 8, and the aggregate metrics

presented in Lemma 4 and Lemma 5 were verified until the gap value satisfied ∥h−

L(h)∥ ≤ 10. The results are presented in the subsequent sections. Section 5.1 presents

results on path flow bounds, while Section 5.2 evaluates the bounds on aggregate

metrics such as link flows, travel time, and total system travel time. Finally, Section

5.3 demonstrates the benefits of using these bounds in a network design problem. To

foster collaborative research, the source code for all experiments is made available on

GitHub1.

1github.com/debojjalb/SUE Bounds
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5.1 Results on path flow bounds

We present the results on the tightness and accuracy of the bound derived on

path flows in Theorem 8. Recall that Theorem 8 provided an upper bound on the

distance between the current path flow solution and the equilibrium solution based

on just the current path flow solution. However, this is only a local bound, meaning

it is valid only “close” to equilibrium.

The parameter 0 ≤ r < 1 in Theorem 8 determines how close to the equilibrium

the bound would remain applicable. For smaller values of r, the bound is much tighter

but applies only close to equilibrium, while when r approaches one, the bound remains

valid much farther from equilibrium but is significantly looser. We define a metric

called bound gap for each OD pair to quantify the tightness of the derived bounds.

The bound gap for a OD pair at a iteration i of MSA is defined as

BGOD
ith iteration =

(
|∥h− ĥ∥OD −MOD

hr ∥L(h)− h∥OD|
)
ith iteration

. (5.1)

We then define the bound gap across all the OD pair as

BGith iteration =
∑
OD

BGOD
ith iteration. (5.2)

When the bound gap is computed for the iteration corresponding to a gap value of

one, we denote it as BG without a subscript. To identify the value of r that balances

tightness and applicability of the derived bound on path flows, we test the bound

across a range of r values. The results are summarized in Table 5.4.
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Sioux Falls BMC EMA Anaheim

r It. Gap BG It. Gap BG It. Gap BG It. Gap BG

0.1 106 2.4 0.68 54 19.3 0.70 10 11431 0.56 33 1475.6 0.55
0.2 105 2.7 0.77 35 141.5 0.78 10 11431 0.63 15 9868.1 0.62
0.3 48 1082.9 0.88 24 447.5 0.89 10 11431 0.72 9 18610 0.71
0.4 45 1649.4 1.0 17 929.3 1.0 10 11431 0.84 3 56269.9 0.82
0.5 43 2036.1 1.2 13 1408.2 1.3 10 11431 1.0 3 56269.9 0.99
0.6 42 2262.5 1.5 10 1920.6 1.6 10 11431 1.3 3 56269.9 1.2
0.7 24 13722.1 2.1 8 2387.9 2.1 10 11431 1.7 2 86713.2 1.7
0.8 18 26260.1 3.1 3 6259 3.1 10 11431 2.5 2 86713.2 2.5
0.9 17 29295.3 6.2 3 6259 6.3 10 11431 5.1 2 86713.2 4.9

Ref. 115 1 83 1 99 1 103 1

Table 5.4: MSA iteration (It.) and gap (∥h−L(h)∥) values when the path flow bound
first holds in all OD pairs for different networks at various r values. The reference
row indicates the number of iterations required by MSA to reach a gap level of one
(equilibrium solution). The BG column presents the bound gap if the MSA was run
until a gap value of one for a particular value of r. A lower bound gap means the
bound is tighter.

Table 5.4 presents the iteration count and the corresponding threshold gap

value (|h−L(h)|) at which the bounds first hold for all OD pairs in the network. It

also reports the bound gap (BG) for several values of r, assuming the MSA is run

until the gap reduces to one. A lower BG indicates a tighter bound. It is important

to note that we do not claim the bounds continue to hold for all subsequent iterations

after iteration i, even if they hold at i. While empirical evidence suggests that the

bounds typically hold beyond the iteration presented in Table 5.4 for most OD pairs

in the tested networks, there are cases where they do not hold for certain OD pairs

until a significantly smaller gap is reached.

It is observed that as the values of r become larger, the bound holds from quite

far from equilibrium and is loose, while for smaller values of r, the bound is much

tighter and holds close to equilibrium. The effect of the parameter r is particularly

evident in the Sioux Falls network. Hence, we show the bound for two values of r in

the Sioux Falls network in Figure 5.1 to illustrate the effect of r on the tightness and
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applicability of the bound.
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(b) r = 0.2, log norm scale.
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(c) r = 0.6, linear norm scale.
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Figure 5.1: Sioux Falls bound on path flows with different r values. The orange
line represents the bound MOD

hr ∥L(h)− h∥OD, while the blue line depicts the actual
distance from equilibrium ∥ĥ − h∥OD. The x-axis denotes the number of MSA iter-
ations, and the y-axis represents the norm value in Figures 5.1 and 5.3 and the log
norm value in 5.2 and 5.4.

For the remainder of our experiments, we chose an r value of 0.4 as it strikes

the right balance between tightness and applicability of the bound. The bounds

derived in this study are particularly useful in practical scenarios where multiple traffic

assignment runs are required under varying conditions. We recommend selecting an

appropriate r value by first solving the traffic assignment to SUE once for the specific
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network under study. Once the value of r is chosen and the corresponding threshold

gap is known, reasonably accurate estimates of flow-based metrics at equilibrium can

be obtained by solving the traffic assignment only until the threshold gap is reached,

significantly reducing computational time.

We next present detailed results on path flow bounds and convergence for

each network. Figures 5.2, 5.4, 5.6, and 5.8 show the actual distance from equilibrium,

∥h−ĥ∥OD, alongside our derived bound, MOD
hr ∥L(h)−h∥OD, for 16 randomly selected

OD pairs at every iteration of MSA in the Sioux Falls, BMC, EMA, and Anaheim

networks, respectively. The blue line shows the actual distance for equilibrium, and

the orange line shows the upper bound. We emphasize that obtaining every point on

the blue line requires knowledge of the equilibrium path flow ĥ, whereas each point

on the orange line can be computed just from the current path flow h.

To further assess the effectiveness of the bound near equilibrium, we provide

the semilog plots corresponding to Figures 5.2, 5.4, 5.6, and 5.8 in Figures 5.3, 5.5,

5.7, and 5.9. These plots show the log of the actual distance from equilibrium and the

bound over iterations. The slope of both lines in the semilog plot is similar, indicating

a linear rate of convergence.
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Figure 5.2: Sioux Falls - Path bound for 16 random OD pairs. The orange line rep-
resents the bound MOD

hr ∥L(h)−h∥OD, while the blue line depicts the actual distance
from equilibrium ∥ĥ− h∥OD. The x-axis denotes the number of MSA iterations, and
the y-axis represents the norm value.
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Figure 5.3: Sioux Falls - Semilog plot of all iterations for path bound for 16 random
OD pairs. The orange line represents the bound MOD

hr ∥L(h)− h∥OD, while the blue
line depicts the actual distance from equilibrium ∥ĥ− h∥OD. The x-axis denotes the
number of MSA iterations, and the y-axis represents the log of the norm value.
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Figure 5.4: BMC - Path bound for 16 random OD pairs. The orange line represents
the bound MOD

hr ∥L(h) − h∥OD, while the blue line depicts the actual distance from
equilibrium ∥ĥ − h∥OD. The x-axis denotes the number of MSA iterations, and the
y-axis represents the norm value.
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Figure 5.5: BMC - Semilog plot of all iterations for path bound for 16 random OD
pairs. The orange line represents the bound MOD

hr ∥L(h)− h∥OD, while the blue line
depicts the actual distance from equilibrium ∥ĥ − h∥OD. The x-axis denotes the
number of MSA iterations, and the y-axis represents the log of the norm value.
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Eastern-Massachusetts
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Figure 5.6: EMA - Path bound for 16 random OD pairs. The orange line represents
the bound MOD

hr ∥L(h) − h∥OD, while the blue line depicts the actual distance from
equilibrium ∥ĥ − h∥OD. The x-axis denotes the number of MSA iterations, and the
y-axis represents the norm value.
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Figure 5.7: EMA - Semilog plot of all iterations for path bound for 16 random OD
pairs. The orange line represents the bound MOD

hr ∥L(h)− h∥OD, while the blue line
depicts the actual distance from equilibrium ∥ĥ − h∥OD. The x-axis denotes the
number of MSA iterations, and the y-axis represents the log of the norm value.
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Anaheim
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Figure 5.8: Anaheim - Path bound for 16 random OD pairs. The orange line repre-
sents the bound MOD

hr ∥L(h) − h∥OD, while the blue line depicts the actual distance
from equilibrium ∥ĥ− h∥OD. The x-axis denotes the number of MSA iterations, and
the y-axis represents the norm value.
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Figure 5.9: Anaheim - Semilog plot of all iterations for path bound for 16 random
OD pairs. The orange line represents the bound MOD

hr ∥L(h)− h∥OD, while the blue
line depicts the actual distance from equilibrium ∥ĥ− h∥OD. The x-axis denotes the
number of MSA iterations, and the y-axis represents the log of the norm value.
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To analyze the convergence of our bounds to equilibrium and assess the empir-

ical convergence rate, we plot the bound gap (BG) between the derived upper bound

and actual distance from equilibrium for each OD pair over consecutive iterations.

As expected, when the bound gap is plotted against iterations, we observe

that the bound gap converges to zero in all OD pairs. The convergence plots for 16

random OD pairs in the Anaheim network are shown in Figure 5.10. Convergence

plots for other networks are omitted for brevity; however, we present aggregate results

on convergence on all four networks later.

To compute the convergence rate, we plot the ratio of the bound gap over

consecutive iterations since we expect the bound gap to converge to zero. This plot

eventually levels horizontally, indicating that the bound gap approaches zero at a

linear rate close to equilibrium. We compute the convergence rate as the average

of this ratio over the last 25 iterations. Figure 5.11 illustrates this technique for

the Anaheim network. The mean and standard deviation (SD) of the convergence

rate across all OD pairs are provided for each of the four networks in Table 5.5.

Interestingly, it is observed that the convergence rate is similar across all the tested

networks.

Network Convergence rate
Mean SD

Sioux Falls 0.91 0.03
BMC 0.91 0.00
EMA 0.91 0.00
Anaheim 0.91 0.00

Table 5.5: Convergence rate for different networks.
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Figure 5.10: Anaheim - Convergence for 16 random OD pairs. The x-axis denotes
the number of MSA iterations, and the y-axis represents the convergence value.
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Figure 5.11: Anaheim - Rate of convergence for path bound for 16 random OD pair.
The x-axis denotes the number of MSA iterations, and the y-axis represents the ratio
of change in convergence over consecutive iterations.
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5.2 Results on aggregate metrics

We present the results on the bounds for link flows, travel cost, and total

system travel cost, as given in Lemmas 4 and 5. These results are summarized in

figures in Tables 5.6, 5.7, and 5.8, respectively. The plots show the relative distance

from equilibrium in blue, while the bound is represented in orange.

The figures illustrate the relative distance across all iterations and the last 20

iterations, as well as the absolute distance on a logarithmic scale for all iterations.

The y-axis for both all iterations and the last 20 iterations represents the relative

distance, defined as

Relative distance =
Distance from equilibrium (predicted or actual)

Actual value at equilibrium
. (5.3)

These bounds are aggregated over all OD pairs in the network and are, there-

fore, not as tight as the path flow bounds. However, the results indicate they hold

across all iterations. Moreover, the bounds on travel cost and link flows are reason-

ably tight near equilibrium. Further improvements are needed to improve the bounds

on total system travel cost.

5.3 Application to bi-level traffic assignment

To demonstrate the applicability of our bounds in practice, we present a simple

case study in network design. We solve the following problem: find the link in the

network that, when closed, minimizes the absolute link cost norm. Such a problem is

relevant if instances of Braes paradox-like scenarios have to be identified in a network.

To simulate a closed link, we add a toll of $100 (equivalent to a 25-minute delay) on

that link. We test on the Sioux Falls network as it is the smallest network under

study in this thesis and would allow us to fully enumerate the feasible sets to find the

optimal solution.
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Table 5.6: Link flow bounds across networks — Relative (rel.) distance across itera-
tion until a gap value of 10.
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Table 5.7: Travel time bounds across networks — Relative (rel.) distance across
iteration until a gap value of 10.
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Table 5.8: TSTT bounds across networks — relative (rel.) distance across iteration
until a gap value of 10.
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We first solve the problem by exhaustively enumerating the feasible set. Each

link of the network is closed individually, and a traffic assignment run is performed.

The resultant norm of link cost is then checked. This way, the link that, when

closed, would produce the least link cost norm could be obtained. All the traffic

assignment problems are solved to optimality (i.e., until ∥h−L(h)∥ ≤ 1). Algorithm

3 summarizes this procedure.

Algorithm 3 Simple network design without using bounds

for l ∈ L do
(a.) Apply a high toll on link l to simulate its closure.
(b.) Run traffic assignment until gap = 1
(c.) Compute the norm of link flows.
(d.) Record the closed link and the corresponding link cost norm.

To solve the same problem using the bounds derived in Chapter 4, we first

decide the available computation budget and the gap value until we solve each traffic

assignment run. Using this gap value, we select the smallest corresponding r value,

ensuring the bounds remain valid. For our experiment on the Sioux Falls network,

we set the stopping gap value of 100. Referring to Table 5.4, we identify that the

smallest r value for the bound to be applicable beyond this gap is 0.3.

Following the same complete enumeration approach, we solve the traffic as-

signment problems but only until the stopping gap value of 100. At the final iteration,

we record the link cost norm and the upper bound value. We estimate the range of

the equilibrium link cost norm by adding or subtracting the cost norm and the upper

bound on its distance from equilibrium. Using this estimate, we identify the optimal

link to be closed. The entire procedure is outlined in Algorithm 4.
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Algorithm 4 Simple network design using bounds

for l ∈ L do
(a.) Apply a high toll on link l to simulate its closure.
(b.) Run traffic assignment until gap = 1000
(c.) Compute both the norm of link flows and an upper bound on the distance
between the current and equilibrium link flows.
(d.) Estimate equilibrium link flow norm = norm of the current link flows ±
upper bound on the distance between the current and equilibrium link flows.
(e.) Record the closed link and the corresponding estimated maximum equilib-
rium link cost norm.

Table 5.9 presents the results of the top 5 links and corresponding link cost

norm obtained using both procedures. Both methods returned the same top five links

to be closed with the least link cost norm. However, the same result was obtained

36.2% faster using bounds (16.7 minutes using bounds compared to 26.2 minutes

without). As the network size grows, we expect an even more striking improvement

in run time by using the bounds.

Without using bounds With using bounds

Rank Link
Cost
norm

Rank Link
Cost norm
(current)

Upper
bound

Estimated
cost norm

(equilibrium)

1 (24, 23) 92.59 1 (24, 23) 92.60 0.40 [92.20, 93.01]
2 (23, 24) 92.62 2 (23, 24) 92.62 0.42 [92.20, 93.05]
3 (19, 17) 92.89 3 (19, 17) 92.89 0.38 [92.51, 93.29]
4 (17, 19) 93.05 4 (17, 19) 93.05 0.39 [92.66, 93.44]
5 (12, 13) 93.60 5 (12, 13) 93.61 0.39 [93.22, 94.00]

Total time taken: 26.2 min Total time taken: 16.7 min

Table 5.9: Comparison of link cost norms with and without using bounds. The links
and the corresponding equilibrium link cost norm (shown boldfaced) are the outputs
of each algorithm.
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Chapter 6: Discussions and conclusion

6.1 Summary

In this thesis, we derive local upper bounds on the distance of path flows, link

flows, travel costs, and total system travel costs from the corresponding equilibrium

solution. These bounds are local and, hence, only apply near the equilibrium solution.

A detailed analysis of the tightness and the distance from equilibrium at which these

bounds become applicable is also provided. We show the bounds on the distance

of path flows, link flows, and link costs are tight in a network of parallel links with

constant and equal link costs. Further, empirical results on the rate of convergence

indicate a nearly linear rate of convergence close to equilibrium.

We find that the path flow bounds can be computed quickly and efficiently,

and they remain applicable even at a relatively large distance from equilibrium while

staying sufficiently tight across all four tested networks. The link flow and travel cost

bounds apply to all iterations of MSA and are found to be reasonably tight. However,

the bounds on total system travel cost are extremely loose.

We now discuss how our results can be applied in practice. When used as a

stopping criterion in a traffic assignment subproblem while evaluating multiple alter-

natives, these upper bounds can provide valuable insights into the behavior of the

equilibrium solution for each subproblem, allowing early termination for poor alter-

natives. Decision-makers can use these bounds to determine an appropriate stopping

criterion based on aggregate metrics of interest. We present a small network design

example to identify optimal link closures and demonstrate the practical applicability

of the bounds. We perform a complete enumeration of the feasible set to determine

the optimal link for closure. On the Sioux Falls network, the use of the derived bounds

yields a 36% reduction in computation time relative to the case without bounds.
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Further, the derived bounds provide a theoretical background on the empirical

results on gap measures and convergence of traffic assignment problems proposed in

Boyce et al. (2004) and Patil et al. (2021). Even when the bounds derived in this

thesis are not used as a stopping criterion, they can offer insight into the possible

range of equilibrium values for any feasible solution close to equilibrium.

6.2 Limitations and future work

We acknowledge several limitations of this study. Without a global bound,

it is impossible to determine the distance from equilibrium beyond which the local

bound becomes applicable. Extending local bounds to global ones is challenging, as

the parameter r in Theorem 8 cannot be arbitrarily large. While our empirical studies

provide estimates for when these bounds become reliable, a global bound would offer

greater confidence in their applicability.

Furthermore, the computational effort spent in calculating these bounds should

be improved. If the computation is too costly, it defeats the purpose of applying the

bounds as opposed to performing additional iterations to improve path flows. For

instance, in the Sioux Falls network, the computation of bounds took around 0.07s,

while each iteration of the MSA took around 0.18s. However, state-of-the-art traffic

assignment solvers can solve each iteration significantly faster. A significant future

direction in improving the derived bounds would be to find ways to reduce the com-

putational effort in computing them. Matrix algebra techniques in norm estimation

are one such way this can be achieved. These could include ways of using a less com-

putationally expensive norm, such as the Frobenius norm, or using an approximation

of the norm.

Finally, the bounds derived for total system travel costs are found to be very

loose. Our approach relies only on bounds for link flows and travel costs to estimate

total system travel cost bounds. However, incorporating additional information on

the demand for each OD pair could significantly improve these estimates (as these
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bound the feasible region much better than just the bounds on link flows and travel

costs). The SUE also satisfies a path variational inequality (VI) formulation. Such

formulations are often used to bound the price of anarchy in SUE (Guo et al., 2010).

The VI formulation, along with bounds on path flows and path costs, can be used

to derive a bound on total system travel cost. While these extensions are nontrivial,

they present a promising direction for future research.
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