
Debojjal Bagchi
Bachelor of Science (Research)
debojjalb@iisc.ac.in

Abridged Project Write Up
Method of Successive Averages
Guide: Prof. Tarun Rambha

Undergraduate (UG)
Dept. of Mathematics

Date: 18.06.21

1 The MSA Algorithm

The Method of Successive Averages (MSA) algorithm is similar to gradient descent as we start with a feasible
solution and proceed towards the optimal solution by taking step sizes in such a way that the solution at each
iteration stay within the feasible region.
The MSA Algorithm works with a very basic strategy involving the following 3 steps in cyclic order:

• Computation of shortest path.

• Shifting travellers to new paths.

• Updating Link costs & fixing them for next iteration.

2 Convergence

The convergence criteria is based on Wardrop principle. Two most popular gap measures for convergence are:

• Relative gap

• Average excess cost

We have Total System Travel Time (TSTT) and Shortest Path Travel Time (SPTT) as:

TSTT =
∑

(i,j)∈A

xij ∗ tij(xij)

SPTT =
∑

(i,j)∈A

x̂ij ∗ tij(xij)

Clearly SPTT < TSTT in all other cases except User Equilibrium.
Thus the convergence measures have been defines as:

Relative Gap (RG) =
TSTT

SPTT
− 1

Average Excess Cost (AEC) =
TSTT − SPTT∑

(r,s)∈Z2 drs

3 User Equiibrium & System Optimum

There are two possible ways of traffic assignment:

• User equilibrium (UE): The objective is to find a feasible assignment in which all used paths have equal
and minimal travel times.

• System optimum (SO): The objective is to find a feasible assignment that would minimizes the total
system travel time.

The System optimum (SO) Problem can be stated as:

min
∑

(i,j)∈A

xijtij(xij)

Subject to: ∑
p∈Prs

yp = drs ∀(r, s) ∈ Z2

xij =
∑
p∈P

δpijyp ∀(i, j) ∈ A

1



yp > 0 ∀p ∈ P

The User equilibrium (UE) Problem can be stated as:

min
∫ xij

0

tij(w)dw

Subject to: ∑
p∈Prs

yp = drs ∀(r, s) ∈ Z2

xij =
∑
p∈P

δpijyp ∀(i, j) ∈ A

yp > 0 ∀p ∈ P

4 Travel times for MSA Algorithm

timeUE = timeFreeF low ∗ (1 +B(
flow

capacity
)power)

timeSO = timeUE + flow ∗ time
′

UE

timeSO = timeUE + timeFreeF low ∗B ∗ power ∗ ((
flow

capacity
)power)

5 Details of the code

The code is divided into four sections:

• Preliminaries: This section dealt with creating appropriate classes and data cleanup from real transpor-
tation networks data available at this GitHub rep. Adjacency List & Adjacency Matrix were created.

• One to all shortest path algorithms: Algorithms 2 & 3 were used to get the shortest parth from origin
to all nodes. Later results from the two were compared.

• The MSA Algorithm: Finally The MSA Algorithm (Algorithm 1) was coded using both Algorithm 2 & 3.

• Analysis: The final Total System Travel Time for User Equilibrium & System Optimum were calculated.
The run times were compared. The final Relative Gap & Average Excess Coset were calculated.

6 Initialisation in MSA & other details

The codes are available in this GitHub Rep.

• The initial flow in MSA algorithm is initialised as follows: We find the times at 0 flow and then apply the
shortest path algorithm to get initial flow.

• The timeSO is commented in the code. The code runs on timeUE . To see SO Results please uncomment
it in time fn(flow) function

• Similarly the code uses Label Correcting algorithm label Setting algorithm is commented. Uncomment it
in shortest path(data) function to use it.

2

https://github.com/bstabler/TransportationNetworks
https://github.com/debojjalb/MSA-


7 Summary of Results

Network
Nodes:
Links:
Zones:

TSTT (UE) TSTT (SO) % difference
Running Time (UE)
MSA + LC

Running Time (UE)
MSA + LS

Sioux Falls
Nodes: 24
Links: 76
Zones: 24

7497384.342333 7490919.22 0.086 8.17s 7.98s

Eastern-Massachusetts
Nodes: 74
Links: 258
Zones: 74

28225.81 27663.23 2.033 1.86s 2.31s

Anaheim
Nodes: 416
Links: 914
Zones: 38

1420110.10 1405632.089 1.03 1.76s 2.37s

Chicago-Sketch
Nodes: 933
Links: 2950
Zones: 387

18395240.49 18002791.86 2.17 387s 933s

8 Minimising time in large network like Chicago

• We see in all relatively shorter networks. MSA was able to give results in less than 10s. But as the
number of zones increase the polynomial time comes to play and our run time increases. I suggest the
taking following approximations to reduce run time.

• Approximation: In the demand matrix set d[i][j] values to be 0 when d[i][j] < 10−3max(d[i][j])

• Why this works?: Demand between an OD Pair affects the final flows. But note that if demand at an OD
pair is very low less than 0.001 times the maximum flow it will barely affect the flow values. We assume
the demands are well distributed in a real life network and not skewed for this approximation to work
the assumption is pretty true!

• Does Doing this have any significant effect on Run Time?: Yes! Here are the results: (Also the
equilibrium flow values are pretty close. As can be seen from the code)

Without any approximation Running time with Approximation of Order 10ˆ-3*
Network Algorithm TSTT (UE) Running Time (UE) TSTT (UE) Running Time (UE)
Chicago-Sketch MSA + LC 18395240.49 387s 14223775.623 154s

9 Concluding Remarks

• It is difficult to predict in which situation MSA+LC is better and when MSA+LS is better. As LS
terminates in n iterations but LC takes more iterations with less time per iteration. Still in most real case
scenarios LC performed better.

• MSA is slow! As said, “Continental drift would beat it anyday!”. As Number of Zones & Nodes increase,
MSA keeps taking more time as it runs on polynomial time. Also, convergence is slow based on inverse
of iteration number as convex combination. Frank Wolfe Method would be much faster.

• While finding Shortest Paths, topological ordering could help if the network graph is acyclic & can be
topologically ordered.

10 Pseudo-code

Please see next page.

3



Algorithm 1 MSA (Input: Graph G)
1: Set k ← 1
2: while RelativeGap ≥ threshold do
3: x← 1/k ∗ x+ (1− 1/k) ∗ x . Where x is link flow vector
4: Update t(x) . t(x) refers to time for flow x
5: Set x̂← 0
6: for r ∈ Z do
7: shortest path(G, r)
8: for s ∈ Z, (i, j) ∈ prs do . prs refers to shortest path from r to s
9: x̂ij ← x̂ij + drs . drs refers to demand from r to s

10: end for
11: end for
12: RelatieGap = TSTT/SPTT − 1
13: k ← k + 1
14: end while

Algorithm 2 Label Correcting (Input: Graph G, Origin r)
1: µr = 0, πr = r
2: for i ∈ N \ {r} do
3: πi =∞, πi = −1
4: end for
5: SEL = r
6: while SEL 6= ∅ do
7: Remove i from SEL
8: for j : (i, j) ∈ A do
9: if µj > µi + tij then

10: µj = µi + tij
11: πj = i
12: if j not in SEL then
13: add j in SEL
14: end if
15: end if
16: end for
17: end while

Algorithm 3 Label Setting (Input: Graph G, Origin r)
1: S = φ, S̄ = N
2: µr = 0, πr = r
3: for i ∈ N \ {r} do
4: πi =∞, πi = −1
5: end for
6: while S̄ 6= ∅ do
7: i = argminj∈S̄µj

8: S = S ∪ i, S̄ = S̄ \ i
9: for j : (i, j) ∈ A do

10: if µj > µi + tij then
11: µj = µi + tij
12: πj = i
13: end if
14: end for
15: end while

4


	The MSA Algorithm
	Convergence
	User Equiibrium & System Optimum
	Travel times for MSA Algorithm
	Details of the code
	Initialisation in MSA & other details
	Summary of Results
	Minimising time in large network like Chicago
	Concluding Remarks
	Pseudo-code

