
Speeding up the Frank Wolfe Algorithm — Implementation changes,
Contraction Hierarchies and Bi-conjugate direction

Debojjal Bagchi

March 19, 2024

Four changes were tried on the original link flow based traffic assignment. Three of these changes lead to an
improvement in run times while one of them did not.

1 Implementation changes (First Improvement)

Algorithm changes: We observe while calculating the Average Excess Cost (AEC) or Relative Gap (RG), there
is no need to calculate the shortest paths again. The shortest paths are readily available from the All-or-Nothing
(AON) of the current iteration and can be used directly to calculate AEC or RG.

Code changes: The shortest paths computed in the AON function (Network.allOrNothing()) function is re-
turned in the Network.userEquilibrium() function and is passed as input to Network.averageExcessCost() and
Network.relativeGap(). Further the net demand value is stored Network.netdemand attribute of Network class
as soon as it is initialised. Thus the net demand values need not be calculated in each iteration while computing the
AEC

Implication: This is a minor change but slashes the run time by halfves.

2 All-or-Nothing Assignment

Algorithm changes: A quick profiling of the existing Frank Wolfe Algorithm shows the All-or-Nothing (AON) is
the bottleneck of the whole algorithm. There are two parts essentially in the AON step.

a. Calculate all the shortest paths between all the OD pairs

b. Load all flows on the shortest paths

2.1 Contraction Hierarchies (Second Improvement)

Algorithm changes: The first step is tackled using a label setting algorithm. The algorithm is called number of
origin times each time a AON assignment is required. However the network does not change for each of the AON
assignments. Hence, for large networks contraction hierarchies should be used. The “shortcuts” can be computed
once the AON assignment is required. One this new network the shortest paths between all the OD pairs can be
computed very fast.

Code changes: A python library Pandana1 is used to compute the contraction hierarchies. The function Network.create_ch()
uses the current network link costs (stored in cost attribute of class link) to create a Pandana.Network ob-
ject. The creation of Pandana.Network object forms the contraction hierarchies in parallel threads. Each time
Network.allOrNothing() is called a new Pandana.Network object is created and all pair shortest paths are com-
puted. The output of the shortest paths are the full shortest paths and not the backtrack labels.

1https://udst.github.io/pandana/

1

https://udst.github.io/pandana/


Implication: This is a thread dependent function. Running on a machine with more number of threads will fasten
up the process. In general for smaller networks using contraction hierarchies is counter-productive as prepossessing
the shortcuts are not necessary and a simple label setting algorithm performs better.

2.2 Shortest Path Tree based AON assignment (No Improvement)

Algorithm changes: It is observed that one can us the shortest path tree structure and add flow in the reverse
topological order. Although this process seem faster, in all test cases directly adding the flow on the paths proved
faster. This is essentially because while using contraction hierarchies we no longer have access to backtrack labels.
Hence the tree has to be computed and then a topological order has to be found. This is slower than readily adding
the flow to each path.

3 Bi-conjugate direction (Third Improvement)

Algorithm changes: Another reason why Frank Wolfe is slow is that it takes large amount of time to converge.
Rather using new all or nothing assignment to calculate the direction isn’t a great idea near to equilibrium. Thus,
Bi-conjugate directions can be used (Mitradjieva and Lindberg, 2013). This process uses the current AON assignment
as well as AON assignment from last two iterations to compute the new direction. Once the direction is found, it
uses Newton’s method to find the step size.

Code changes: A Julia implementation2 of Bi conjugate direction is used for reference. The direction is computed
in Network.BCFWStepSize() function. The function requires the diagonal vector of the Hessian of the Beckmann
Function. The components of the diagonal is stored is computed in Link.calculateHessianComponent() function
which is αβt0.x

β−1
ij

cβ
(symbols have usual meanings as that of BPR function). The function Network.hessian_diag()

computes the diaginal vector of Hessian using Link.calculateHessianComponent(). Network.BCFWStepSize() also
requires the gradient of Beckmann function which is essentially the travel costs available at cost attribute of link
class. Network.BCFWStepSize() compute the new flow and returns the earlier two AON assignemnt. Specifically it
takes three AON assignment as input and returns the new flow and the last two AON assignments. The variable
names and code is kept similar to the Julia implementation for better understanding which in turn uses similar
notations from Mitradjieva and Lindberg (2013). The first iteration is exactly same as Frank-Wolfe and second
iteration is conjugate Frank Wolfe which uses the current and past AON assignment. From the third iteration Bi-
conjuagte direction is used. Since, the new flow is found in Network.BCFWStepSize() directly Network.shiftFlows
is not required. The function Network.shiftFlowsBCFW() just updates the link flows and travel costs of each link.

Implication: The Bi-conjuagte direction is extremely efficient in finding a good direction. In fact studies (Dial,
1999) by the original authors of Algorithm B has shown Bi-conjugate Frank Wolfe to be faster than Algorithm B
upto a Relative Gap if 10−4 in the Chicago Regional network 3.

4 Results

Three conditions were used to terminate the algorithm in the given results:

(a) If the number of iterations crossed 1000
(b) If the time taken crossed 1000s
(c) If the Average Excess Cost reduced below 10−4

If conditions (a) or (b) terminated the algorithm, we say the algorithm did not converge; else we say the algorithm
converged. As expected the first improvement improves computation by reducing run times by halves. The second
improvement with contraction hierarchies also improves runt times. However, as expected contraction hierarchies are
only better for large networks. Finally Bi-conjugate direction makes the traffic assignment remarkably fast, although

2Available at https://github.com/chkwon/TrafficAssignment.jl
3My implementation is nowhere close to this!

2

https://github.com/chkwon/TrafficAssignment.jl


it still suffers from “tailing”. Based on the results the final code submitted uses label setting algorithm if
number of Zones are less than 120 and Contraction Hierarchies otherwise.

Table 1: Summary of results (Gap: Avergae Excess Cost, Time: Time in seconds, It.: Iteration count. Times in bold
means the algorithm converged in lesser than 1000s and 1000 itterations)

Network Unchanged FW Algorithm With 1st improvement With 1st & 2nd Improvements With all 3 Improvement

Gap Time It. Gap Time It. Gap Time It. Gap Time It.

Anaheim 9 × 10−5 18.60 62 9 × 10−5 10.82 62 7 × 10−5 16.73 288 2 × 10−5 1.69 39
SiouxFalls 0.00224 9.29 1000 0.00224 5.91 1000 0.00226 9.26 1000 8 × 10−5 1.71 230
Eastern Massachusetts 10−4 48.52 322 10−4 27.15 322 7 × 10−5 11.01 246 10−4 1.31 34
ChicagoSketch 0.003032 1000 53 0.003032 1000 53 0.000192 1000 520 10−4 244.7 132

3



References
Dial, R. B. (1999). Algorithm b: Accurate traffic equilibrium (and how to bobtail frank-wolfe. Volpe National

Transportation Systems Center, Cambridge, MA.

Mitradjieva, M. and P. O. Lindberg (2013). The stiff is moving—conjugate direction frank-wolfe methods with
applications to traffic assignment. Transportation Science 47 (2), 280–293.

4


	Implementation changes (First Improvement)
	All-or-Nothing Assignment
	Contraction Hierarchies (Second Improvement)
	Shortest Path Tree based AON assignment (No Improvement)

	Bi-conjugate direction (Third Improvement)
	Results

