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Abstract

In this report, we study the fair and efficient allocation of indivisible public goods.
We will mainly study the recent results by [18]. The main contributions of [18]
are to establish connections between three models of good allocation - Public
Good, Private Good and Public Decision and present polynomial time reductions
between these models for Maximum Nash Welfare (MNW) and leximin allocations.
[18] also shows MNW and lexmin allocations for public goods are fair and effi-
cient. Finally, the authors present the computation complexity of these allocations
and approximation algorithms for the same. In this report a brief survey of the
work related to the three problem setting is presented and further extensions are
discussed.

1 Introduction

The concept of fair allocation of goods was first proposed by [23], and since then, it has gained
huge popularity with applications in several fields, including mathematics, computer science, and
economics, owing to its real-life applications, such as the distribution of goods and services, the
split of assets in divorce settlements, or the division of family responsibilities. The problem revolves
around how to distribute resources among a group of agents in a way that is deemed fair by all
participants. Thus, fair division is not only a theoretical issue; it also has several practical uses.

Further goods can be either divisible or indivisible. Divisible goods are those that can be divided into
smaller portions, such as money or food, while indivisible goods are those that cannot be divided,
such as a house or a car. The division of divisible goods is relatively straightforward [10], while the
division of indivisible goods is much more complex [2], as each agent must be allocated an entire
unit of the resource.

Finally, we can broadly divide goods into two categories based on the distribution of resources:
private and public. A personal item, for example, a car, is a private good that only has value to the
agent it is assigned to. A public good, on the other hand, like a book in a library or a park, can benefit
numerous agents at once. The distribution of public goods presents specific difficulties because it
significantly affects the welfare of all agents involved. The paper [18] focuses on models of public
good allocation and its connection with private goods.

In this study, we look into efficient and fair allocation of indivisble public goods. The rest of the
report is organised as follows: Section 2 discussed various definitions and terminologies, Section
3 goes over some of the related work, Section 3 details the main results of [18] along with brief
proof sketches, 5 extends the work in a new direction and 6 concludes the discussion and gives future
research directions.



2 Definitions and Terminologies

2.1 The three problem settings

Definition. PRIVATEGOODS

A private good (PRIVATEGOODS) instance can be defined as a tuple (A,G,V). where:

• A = [n] is a set of n agents

• G = [m] is a set of m private goods

• V = {vi}i∈A a set of utility function for each agent, where the function vi : 2
G → R≥0

is the utility that agent i has for a subset of the goods. Typically, additivity is assumed as
follows: vi(S) =

∑
j∈S vi(j)

An allocation x = (x1, ...xn) ∈
∏

n G is a n partition of the goods (G) into n parts x1...xn, where
agent i is assigned the bundle xi and thus gets the utility of vi(xi).

Definition. PUBLICGOODS

A public good (PUBLICGOODS) instance can be defined as a tuple (A,G,k,V), where:

• A = [n] is a set of n agents

• G = [m] is a set of m private goods out of which at most k can be selected

• V = {vi}i∈A a set of agent utility functions, where vi : 2
G → R≥0

An allocation x is a subset of G of size at most k, (|x| ≤ k), giving agent i an utility of vi(x)

Insights. k can be interpreted as a public budget that an group of agent has which they want to
use collectively on public goods which are unit priced each. Thus, the model is closely related to
participatory budgeting. In simple terms: n agents wants to select k public goods from m available
public goods. Examples for k < n includes voting, committee selection, etc. For the case of k ≥ n,
a motivating example would be k books in a public library of n readers. It is important to ensure
fairness at an individual level while allocating public goods. For instance, in the library-book example,
a good allocation should incorporate taste of each reader.

Definition. PUBLICDECISIONS

A public decision (PUBLICDECISION) instance first proposed in [13] can be defined as a tuple
(A,G,V), where:

• A = [n] is a set of n agents

• G = [m] is a set of m issues and each j ∈ G has a set of kj alternatives defined as
Gj := (j, 1)...(j, kj)

• V = {vi}i∈A a set of utility functions for each agent where agent i has the value vi(j, l) for
the lth alternative of the jth issue. The valuations are additive.

An allocation x = (x1...xm) comprises of m decisions where xj ∈ [kj ] is the decision on issue j
thereby giving agent i an utility vi(x) =

∑
g∈G vi(j, xj)

Insights. As in the case of PUBLICGOODS a decision made in PUBLICDECISION is expected to be
fair to the participants.

2.2 Quantifying Fairness

As seen in section 1.1 it is important ti ensure fairness when dividing goods among agents. However
maintaining fairness can be challenging as it competes with efficiency [8]. The following subsection
discusses some of the popular fairness notions [20, 8].

• Proportionality (Prop) and α-Proportionality (α-Prop): This fairness notion ensures
every agent should receive its proportion of goods available. Thus, the proportional share
of agent i is denoted as Propi =

vi(G)
n . We say an allocation satisfies α-proportionality
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if vi(x) ≥ αPropi ∀i. We say just Prop if α = 1. It should be noted that Proportionality
satisfying allocations might not always exist. Finally, its evident that Prop ensures fairness
at an individual level.

• Relaxation of α-Proportionality upto 1 good (α-Prop1): This fairness notion ensures
every agent gets its prop by swapping atmost one good from his allocation with a good
outside its allocation. Formally, this be be defined as: An allocation x is Prop1 if ∃g ∈
x, g′ ∈ G such that vi((x− g) ∪ g′) ≥ αPropi ∀i. We say just Prop1 if α = 1. Again, its
evident that Prop1 ensures fairness at an individual level and is less strong than Prop.

• α-Round Robin Share (α−RRS): The round-robin share of agent i, denoted by RRSi is
the minimum value an agent can be guaranteed if the agents pick k goods in a round-robin
fashion, with i picking last. An allocation x is said to be α − RRS if ∀i ∈ A, vi(x) ≥
αRRSi

• Envy-freeness: This fairness notion ensures every agent i should prefer their own allocation
over any other agent j’s allocation, in a sense the agents dont envy each other.

• Pareto-optimality: This fairness notion ensures that it should be impossible to make an
agent i better without making another agent j ̸= i worse. Formally, an allocation y is
said to Pareto-dominate an allocation x if ∀i ∈ A, vi(y) ≥ vi(x) (one of the inequalities
must be strict). An allocation x is called Pareto-optimal if there exists no allocation that
Pareto-dominates x.

2.3 Allocation Strategies

Strategy 1: Maximum Nash Welfare (MNW) allocation

Nash welfare (NW ) can be defined the geometric mean of agents utilities, i.e.,

NW (x) = (
∏
i∈A

vi(x))
1/n

NW allocation ensures fairness in allocation of goods [21].

An allocation that maximises the Nash Welfare is referred to as a Maximum Nash Welfare (MNW)
Allocation. This allocation helps to balance between maximising the sum of utilities (utilitarian social
welfare) and individual fairness [3]. MNW allocations are good in the sense that they are pareto-
optimal (no dominating allocations) and fair (satisfies relaxations of envy-freeness and proportionality
for PRIVATEGOODS and PUBLICDECISION)

The MNW allocations for the three problem setting are as follows:

• PRIVATEGOODS: argmaxx∈∏
n(G)NW (x)

• PUBLICGOODS : argmaxx⊆G,|x|≤kNW (x)

• PUBLICDECISION : argmaxx∈decisionsNW (x)

The MNW allocations for PRIVATEGOODS, PUBLICGOODS, and PUBLICDECISION are denoted as
PRIVATEMNW, PUBLICMNW, and DECISIONMNW

Strategy 2: lexmin allocation

Given an allocation x, let xlex denote the vector of agent’s utilities under x, sorted in non-decreasing
order. For two allocations x and y, x leximin-dominates y if:

• ∃i ∈ [n] s.t. xlex > ylex

• xlex = ylex ∀ j < i.

An allocation is leximin-optimal if no other allocation leximin-dominates it.

The lexmin allocation is good as it can be thought of a mechanism that first maximizes the minimum
utility that any agent gets followed the second lowest utility. Further the lexmin allocation satisfies
the fairness notions of proportionality, envy freeness along with pareto-optinality [20].

The lexmin allocations for PRIVATEGOODS, PUBLICGOODS, and PUBLICDECISION are denoted as
PRIVATELEXMIN, PUBLICLEXMIN, and DECISIONLEXMIN
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3 Related Works

Fair division of goods have been in study for past 6 decades. This line of research was first started
by [24] by the cake cutting problem. In case of division of goods several fairness notions have been
developed. Among these, proportionality and envy freeness introduced by [24, 17] are most famous.
However these are too strong to be delivered in practical scenarios [7].. Hence several relaxed fairness
notions are proposed in literature, which have been discussed in earlier section.

Allocation of Private goods have been well studied theoretically [19]. A central solution concept to
fairly allocate goods is the Nash Welfare which is simply the geometric mean of agent utilities [21].
The Maximum Nash Welfare problem (MNW) is to find the allocation to maximise nash welfare [21].
Similar to MNW allocations, the authors of [18] also study the lexmin allocation. MNW and Lexmin
allocations are a good allocation solution as these give efficient Pareto optimal (PO) solutions and is
fair as it satisfies envy-freeness and proportionality for PRIVATEGOODS and PUBLICDECISION [11,
13].

[1] studied the problem of allocating maxmin share allocation, a recently introduced fairness notion.
[4] also looked into maxmin allocation in respect of indivisible goods. [9] investigated several
different fairness notion for allocation of indivisible goods. There has been extensive studies related
to maximum nash welfare in terms of private goods [12, 5]. Lexmin allocation was developed as a
fairness notion. [22] has also showed that lexmin allocations can be made to be envy free upto any
good. However [18] was among the first to look into fair and efficient division of public goods. While
[18] focusses on as fairness measures, [15] focusses on core as a fairness notion for fair and efficient
division of indivisible public goods. [15] were the first to estimate core in an indivisible setting.

Another important direction of research is to develop algorithms for finding out these allocations.
The problem is well studied for PRIVATEGOODS. [14, 6] has shown PRIVATEMNW is NP-hard for
N = 2 agents, but the problem becomes solvable in polynomial time if the valuations are binary [14,
6].

Using the reduction from PRIVATEGOODS to PUBLICGOODS, the authors of [18] show PUBLICMNW
is NP-hard for k < n. The authors also show PUBLICMNW is NP-hard for any k and even for
binary valuation which is in contrast to the PRIVATEMNW case. Finally using the reduction from
PUBLICGOODS to PUBLICDECISION, the authors of [18] show DECISIONMNW is NP-hard even
for binary valuations.

4 Main Results of [18]

[18] addresses three main questions which we shall discuss breifly in the next three subsections, these
three questions are as follows:

• Relating the three problem setting PRIVATEGOODS, PUBLICGOODS, and PUBLICDECISION

• Fairness and Effitiency guarantees in PUBLICGOODS

• Computing the computional complexities of the MNW and Lexmin allocations for PUBLIC-
GOODS

4.1 Relating the three problem setting PRIVATEGOODS, PUBLICGOODS, and
PUBLICDECISION

There doesn’t seem to be connections between the three problem setting on first glance but the authors
of [18] show there are polynomial time reductions between the MNW and lexmin allocation problems
in the three problem settings.

Theorem. PRIVATEMNW polynomial-time reduces to PUBLICMNW

Proof Sketch.

Given an instance I of PRIVATEGOODS I = (A = [n],G = [m], V ) construct an instance I’ of
PUBLICGOODS I’ = (A′ = [m+ n],G′ = [m.n], k = m,V ′)

Create agents in I’ corresponding to the agents in A. Then add m dummy agents, one corresponding
to each private good.
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Now introduce m.n public goods by making n copies of each good in G. set k as the number of private
goods

Define the valuations of i in A′ as follows

v′i(jl) =


vij if i = l and i ∈ [n]

1 if i = n+ j

0 otherwise
(1)

This essentially refers to the situation where each agent i values the ith copy of every good j at what
they valued them at the private good setting, and values all the other goods at zero. Each dummy
agent j which is created corresponding to the jth private good values all public good copies of jth
good at value 1 and 0 otherwise.

Now the reduction follows as:

Suppose MNW allocation of I’ has positive nash welfare, so each agent gets positive utility. Now
note that the jth dummy agent only values copies of the jth good and since they have positive utility
so they get atleast one copy of the jth good.

But, we have k = m, so only m public goods can be selected in an allocation and there are m dummy
agent. So by pigeon hole principle exactly one copy of each good is selected in the allocation.

Now from an allocation x′ of I’ we can construct an allocation x of I . Observe that the ith agent
only values the ith copy of goods. Thus x can be constructed as xi = j ∈ G : ji ∈ x′. Clearly then
vi(xi) = v′i(x

′) and every dummy agent d gets value v′d(x
′) = 1. Thus product of utilities of agents

in x = product of utilities of agents in x′. The same argument holds in the other direction by reversing
the logic. i.e, from an private goods instance and an allocation of private goods, we can create a public
goods instance and an allocation of public goods with the same product of utilities (nash product).

However the above argument won’t hold if the maximumn nash welfare is zero. This can be handled
by doubling the number of agents. Also, it is easy to observe the reduction is polynomial time.

Theorem. PublicMNW polynomial-time reduces to DecisionMNW

PROOF SKETCH :

Given an instance Iof PUBLICGOODS I= (A = [n],G = [m], k, {vi}) construct an instance I ′ of
PUBLICDECISIONS I’ = (A,G, {Gj}j∈G , {vi}i∈A)

When k = m select all the m goods.

When n ≤ k < m let V = maxi.jvij , create m public issue for each j ∈ G with two alternatives
c ∈ {1, 2} i.e, Gj = {(j, 1), (j, 2)}, Define A′ = [n +mT ], T = [2mnlogmV ] where the first n
agents of I’ are same as the n agents (who values alternative 1 at vij in I and the next mT are of two
types: {n+ 1, ...n+ kT} of type A (who values only alternative 1) and rest of type B (who values
only alternative 2).

Suppose x′ be an allocation of I’ and x of I. let S1 be the set of issies j with decision 1 in x′ and
suppose there are k′ such issues. Note that:

NW (x′) = (
∏
i∈[n]

v′i(x
′).(k′)kT .(m− k′)(m−k)T )

1
n+mT

let x = S1 ∈ G be the set of public goods that corresponds to the decision (j, 1), Then, for any
i ∈ [n], vi(x) = v′i(x

′) as v′i(j, 2) = 0 ∀j ∈ [m]. So,

NW (x′) = (
∏
i∈[n]

vi(x).(k
′)kT .(m− k′)(m−k)T )

1
n+mT = (NW (x)(k′)kT .(m− k′)(m−k)T )

1
n+mT

Now note that the nash product for an instance of PublicGoods with k = l, Wl is increasing in
l and are bounded by (mV )n. But k ≥ n where l ≤ m. Define g(a) = a ∗ k(m − a)m−k.
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Note G1 = kk(m − k)m−k and G2 − max(g(k − 1), g(k + 1)) are the maximum two values
that g can attain. Further, it can be shown GT

1 > Wm ∗ GT
2 . (This can be done by expanding

log g(k)−log g(k−1) ≥ 1/2m and log g(k)−log g(k+1) ≥ 1/2m giving T (log G1−log G2) >
1/2m∗(2mnlogmV ) ≥ logWm and finally using this, Wk.g(k)

T ≥ GT
1 > Wm.GT

2 ≥ Wk′ .g(k′)T .
Hence Wk′ .g(k′)T is maximises ar k′ = k. But,

NW (x′) = (Wk′g(k′)T )
1

n+mT

.

So |x| = k, and x maximises te NW among all allocations of Icardinality constarint. and is hence
MNW allocation in I . Again clearly its a polynomial time reduction.

Theorem. PRIVATELEX polynomial-time reduces to PUBLICLEX which in turn polynomial-time
reduces to DECISIONLEX

Proof Sketch.

The proofs follows from the same strategy used in the earlier two theorems.

4.2 Fairness and Efficiency guarantees in PUBLICGOODS

The authors of [18] tried to understand how fair and efficient are the MNW and lexmin allocations in
the PUBLICGOODS setting. In this regard the authors present the following results.

Theroem. When valuations are additive and monotone the following holds in a PUBLICGOODS
instance.

• Any allocation that satisfies RRS also satisfies Prop1.

• Any allocation that is α−RRS is also α. n
2n−1 -Prop. Further, when n|k, α−RRS implies

α−Prop. This even holds when the valuations are sub-additive.

• Any allocation that satisfies α−Prop also satisfies α
n−RRS

• Any allocation that satisfy Prop1 need not satisfy α−Prop or α−RRS

The proofs follow from definitions. For the sake of brevity we skip the proof for these results.

Theroem. The MNW allocations for PUBLICGOODS satisfy Prop1, Pareto-Optimality, and
1/n−RRS. Further when k ≥ n, MNW allocation satisfies 1

2n−1−Prop.

Proof Sketch:

Pareto-Optimality. Suppose MNW allocations do not satisfy pareto optimality, this would mean one
of agent could get a strictly higher value keeping the values of other agents non decreasing. Consider
two cases:

• MNW value ̸= 0: Then we can get an allocation whose NW is greater. Contradiction.

• MNW value = 0: If the value increase holds for an agent with non zero value initially, the
nash product over these agents increases, contradiction. Else, if the value increases for an
agent with zero value initially then the number of agents with non zero values increases,
again a contradiction to optimality of MNW.

1/n−RRS. This can be shown by the following series of steps:

• Assume there exists a MNW allocation x which doesn’t satisfy 1/n−RRS.

• Then, for some agent i, vi(x) < (1/n)RRSi.

• Order the goods according to i’s valuation, such that vi(gr) ≥ vi(gs) ∀1 ≤ r ≤ s ≤ m. Let
p = ⌊k/n⌋, if k < n =⇒ p = 0, RRSi = 0; for k ≥ n, the RRSi = vi(g1, ..., gp).
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• Scale the valuations so that for every agent i, vi(x) = 1, which implies RRSi > n

• Order the goods in x according to i’s valuation: let x = (j1, j2, . . . , jk), such that
vi(jr) ≥ vi(js) ∀1 ≤ r ≤ s ≤ k. Define for r ∈ [p], Sr = jrnn+1, . . . , jrn, and
g′r = argminj∈Sr

∑
h∈A′\{i} vhj

• Construct x′ by removing and adding goods according to specific conditions, ensuring that
g1, . . . , gp ∈ x′ where gp = ⌊k/n⌋ which ensures vi(x′) ≥ RRSi > n

• Finally it can be shown NW (x′)n = NW (x)n by expanding the NW. This contradicts x is
MNW

Prop1. Directly by previous theorem.

k ≥ n =⇒ 1
2n−1−Prop. By previous theorem, Any allocation that is α−RRS is also α. n

2n−1 -Prop.
Take α = 1/n

Theroem. The Lexmin allocations satisfy Prop1, Pareto-Optimality, and RRS. Further when k ≥ n,
lexmin allocation satisfies n

2n−1−Prop.

The proof is similar to the earlier theorem and is skipped for brevity.

4.3 Computing the computational complexities of the MNW and Lexmin allocations for
PUBLICGOODS

The problem for computational complexity of PRIVATEGOODS are well studied in literature. [14,
6] has shown PRIVATEMNW is NP-hard for N = 2 agents, but the problem becomes solvable in
polynomial time if the valuations are binary [14, 6]. Using the reduction from PRIVATEGOODS to
PUBLICGOODS show PUBLICMNW is NP-hard for k < n. The following theorems expands on the
computational complexity for PUBLICMNW and PUBLICLEX.

Definitiion. Exact Regular Set Packing (ERSP) problem. Given n elements in X = (x1, x2, ..., xn)

and a family of subsets of X , F = {F1, ..Fm} with |Fj | = d, the problem is to compute a subfamily
F ′ ⊆ F, |F ′| = r such that ∀Fi ̸= Fj ∈ F ′, Fi ∩ Fj {}. The ERSP problem is NP-hard [16].

Theorem. PUBLICMNW and PUBLICLEX is NP-hard, even when all valuations are binary

Proof Sketch. The authors of [18] proposes a reduction of the PUBLICMNW to the ERSP problem
as follows: Let I = (X,F, d, r) be an instance of ERSP. Construct a PUBLICGOODS instance
I ′ = A,G, k, vii∈A, T . Let A = 1, 2, . . . , n, G = g1, . . . , gm ∪ d1, . . . , dn representing m + n
public goods. Define the valuation as:

vi(gj) =

{
1 if xi = Fj

0 otherwise
vi(dj) = 1 ∀dj ∈ G (2)

Set k = r + n and T =
(
(n+ 1)dr.nn−dr

)1/n
.

The authors finally show that I can be solved the ERSP problem ⇐⇒ the MNW for I ′ is at least T .

The result for by reducing from the c-monotone SAT problem which is NP hard.

Theorem. PublicMNW and PUBLICLEX is NP-hard, even for two agents

The proof is skipped for brevity.

Corollary. The problems DECISIONMNW and DECISIONLEX are NP-hard.

The reduction from PUBLICMNW to DECISIONMNW and from PUBLICLEX to DecisionLex along
with the fact that PUBLICMNW and PUBLICLEX are NP hard gives the corollary.
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Since the computation of MNW and lexmin allocations for PUBLICGOODS are NP-hard, [18]
provides an appoximation algorithm for computing the same. The algorithm provided an O(n) factor
approximation to MNW and satisfies fairness properties of RRS, Prop1 when valuations are monotone
and subadditive.

Theorem. There exists a pseudo polynomial time approximation for PUBLICMNW when the number
of agents are constant.

Insights. The run time of the algorithm is found to be O((m.w)n) where w = maxi,jvij . This
indicates when the PUBLICGOODS instance has constant number of agents and agent valutations are
binary PUBLICMNW can be solvable in polynomial time.

5 My Ideas

We extend the given definition of a public good to a scenario where each good has a cost and agents
have a collective budget.

Modified Definition. PUBLICGOODS-COST

A public good with cost (PUBLICGOODS-COST) instance can be defined as a tuple (A,G,k,V, C,B),
where:

• A = [n] is a set of n agents

• G = [m] is a set of m goods, where each good j ∈ G has a cost cj ∈ R≥ 0

• k ∈ Z≥ 0 is the maximum number of goods that can be selected

• V = (vi)i∈A a set of agent utility functions, where vi : 2
G → R≥ 0 is a function that maps

a set of goods to the utility that agent i derives from it

• C = (cj)j∈G is the set of costs of the goods

• B ∈ R≥0 is the collective budget of the agents

An allocation x is a subset of G of size at most k, (|x| ≤ k), giving agent i a utility of vi(x), subject
to the budget constraint

∑
j∈x cj ≤ B.

This model reflects the fact that the agents want to find an allocation or find a set of goods that
maximizes their utility but subject to the constraint that the total cost of the selected goods do not
exceed a collective budget.

Example. This model has wide range of applications, here we give two such examples.

• (k < n): Consider a Public Transit System where there are n commuters and m origin-
destination pairs for routes. Each route has a different cost associated (some are longer and
need more fuel). Suppose the transit authority issues tickets at a different amount of money
from each a set of OD pairs at an amount cj making the total budget as B. The objective is
to maximize the total utility of the commuters, which may depend on several factors such as
the travel time, safety or ease of the travel. The company needs to open k OD pairs in a city.
Clearly the model can be defined in a PUBLICGOODS-COST setting.

• (k > n) Consider another instance in a library with n people subscribed want to purchase
k books. Each book costs cj and the total amount that can be spent must fall below the
coolective subscription fees of the library B. Each user gets an utility based on their
preferences.

Allocation. The MNW allocation for this problem can be defined as follows:

x∗ = argmaxx⊆G,|x|≤k,
∑

j∈x cj≤B

∏
i∈A

vi(x)

Theorem. The MNW allocations for PUBLICGOODS-COST is Pareto Optimal

Proof. See Appendix - I
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Fairness. α− Prop1 for the MNW allocation can be defined as follows. An allocation x is said to
be α-Prop1 if ∀i ∈ A, there exists a good g ∈ x in the allocation and another good g′ ∈ G perhabs
not in the allocation such that swapping g with g′ in the allocation x results in a utility of at least
α · Propi for agent i, while still satisfying the budget constraint.

∃g ∈ x, g′ ∈ G with
∑

j∈(x−g)∪g′

cj ≤ B

such that
vi((x− g) ∪ g′) ≥ α.Propi ∀i

α − Prop1 doesn’t balance the trade off between the valuations and cost of goods, hence we can
define a new fairness notion that ensures the difference between the total value derived from the
goods by a group of agents and the total cost of goods is divided fairly among the agents of that group
which is a stronger fairness notion. Let’s define this fairness notion as Cost Adjusted Proportionality
or CAP. We say an allocation x is CAP if:

vi(x)∑
j∈x cj

≥ β
Propi∑
j∈G cj

We can define an allocation that is effitient and fair in terms of CAP, we call this allocation a
BUDGETALLOCATION. Suppose such an allocation is x∗. We define BUDGETALLOCATION as a
multiobjective optimisation:

Maximise product of utilities of all agents subject to budget constraints

maxx

∏
i∈A

vi(x)subject to
∑
j∈x

cj ≤ B

Ensure CAP fairness for all agents
vi(x)∑
j∈x cj

≥ β
Propi∑
j∈G cj

∀i ∈ A

Algorithm. Green Heuristic Algorithm for finding a "good" allocation PUBLICGOODS-COST

We provide a greedy heuristic for finding the allocations. Refer to Appendix - I for the same.

Theorem. The MNW and lexmin allocations for PUBLICGOODS-COST is NP hard

Proof. See Appendix - I

6 Concluding Remarks

In this report we studied fair and efficient allocation of indivisible public goods. We mainly looked
into the results of [18] which mainly focuses on allocation public goods scenario of selecting k out of
m public goods with n agents in fair and efficient manner. [18] showed the maximum nash welfare
and lexmin allocation for the setting are efficient and fair, and that computing them is NP hard. The
authors also presented polynomial time reductions between the MNW and lexmin allocations in
the private good, public good and public decision setting and finally provided an approximation
algorithm for computing MNW and lexmin allocations for public goods.

We extended the Public goods formulation to a Public goods with cost instance, where each public
good has some costs and there are budget constraints. We showed the MNW allocation for the
problem and proposed a new fairness notion and an allocation based on that as a multi objective
optimisation problem. We showed solving the MNW allocation for this problem is NP hard. We
also proposed a naive greedy heuristic to get a good allocation for the problem. There are several
future directions for this setting – investigating if the reductions to public decisions will hold and if
the proposed MNW allocation in this setting fair.

Other future directions include developing a polynomial time prop1 and pareto-optinal allocation
for public goods and developing constsnt factor approximation algorithm for public MNW even for
special cases.
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A Appendix - I

Theorem. The computation of MNW allocations for PUBLICGOODS-COST is NP Hard.

Proof.

We show this by doing a reduction from PUBLICGOODS-COST problem with budget constraints to
the PUBLICGOODS problem without budget constraints. We already know the MNW allocations for
PUBLICGOODS problem without budget constraints is NP hard. We will show that an instance of
PUBLICGOODS problem can be transformed into an instance of the PUBLICGOODS-COST problem,
demonstrating that the PUBLICGOODS-COST problem is at least as hard as the PUBLICGOODS
problem.

Consider an instance of the PUBLICGOODS problem, described by the tuple (A,G,k,V), where:

A = [n] is a set of n agents G = [m] is a set of m goods k ∈ Z≥0 is the maximum number of goods
that can be selected V = vii ∈ A a set of agent utility functions, where vi : 2G → R≥ 0 is a function
that maps a set of goods to the utility that agent i derives from it

We can transform this instance into an instance of the PUBLICGOODS-COST problem by introducing
budget constraints. Define the tuple (A,G,k,V, C,B), where:

A,G,k,V remain the same as in the original PUBLICGOODS problem C = cjj∈G is the set of costs
of the goods, where each cost cj = 1 for all j ∈ G, that is cost of each good is 1. Set B = k. That is
the collective budget of the agents is set equal to the maximum number of goods that can be selected.

Now, observe that any allocation of goods in the PUBLICGOODS problem can also be an allocation in
the PUBLICGOODS-COST problem, since:

• The total cost of any allocation in the PUBLICGOODS problem is at most k (because there
are at most k goods in the allocation and each good has a cost of 1).

• The budget constraint in the PUBLICGOODS-COST problem is set to B = k, which means
that any allocation in the PUBLICGOODS problem satisfies the budget constraint in the
PUBLICGOODS-COST problem.

Therefore, any solution to the PUBLICGOODS problem is also a valid solution for the corresponding
PUBLICGOODS-COST problem. This shows that the PUBLICGOODS-COST problem is NP-hard.

Theorem. The MNW allocations for PUBLICGOODS-COST is Pareto Optimal

Proof. Suppose MNW allocations for PUBLICGOODS-COST do not satisfy pareto optimality, this
would mean one of agent could get a strictly higher value keeping the values of other agents non
decreasing. Consider two cases:

• MNW value ̸= 0: Then we can get an allocation whose NW is greater. Contradiction.
• MNW value = 0: If the value increase holds for an agent with non zero value initially, the

nash product over these agents increases, contradiction. Else, if the value increases for an

11

https://doi.org/10.1145/2764468.2764490
https://doi.org/10.1145/2764468.2764490
https://doi.org/10.1145/2764468.2764490
http://www.jstor.org/stable/1907266


agent with zero value initially then the number of agents with non zero values increases,
again a contradiction to optimality of MNW.

Note that the whole analysis falls through even with budget constraints.

Algorithm.

Given below is a greedy algorithm for allocating goods for the problem. The algorithm uses another
algorithm to find optimal MNW allocation without budget constraints as a subroutine.

Algorithm 1: Greedy Algorithm for Public Goods with Budget Constraints
Input: Set of agents A, set of goods G, maximum number of goods k, agent utility functions vi,

goods costs cj , collective budget B
Output: Final allocation x
Initialize an empty set for the final allocation x and a remaining budget Br = B

Sort the goods G in decreasing order of their utility-to-cost ratio: vi(g)
cg

, where vi(g) is the utility
derived by agent i from good g, and cg is the cost of good g

for each good g in the sorted list of goods do
if adding g to the allocation x does not violate the budget constraint and the size constraint,

i.e.,
∑

j∈x∪g cj ≤ Br and |x∗ ∪ g| ≤ k then
Add g to the allocation x; Update the remaining budget: Br = Br − cg;

return the final allocation x;
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