
A K-best Edge Tolling Scheme

Debojjal Bagchi, Keya Li, Qianqian Tong

CE392C Course Project

November 28, 2023

1/21

Outline

Introduction

Methodology - Motivation

Mathematical Formulation

Algorithm

Convergence Criterion
Initial Solution
Improving Direction
Local Search

Results

Summary

Future Directions

2/21

Introduction

User Equilibrium (User-driven): Every used path between the same origin and destination has
equal and minimal travel time

System Optimal (System-wide): Total travel time for all travelers within the transportation
network is minimized

(a) Individual Level (b) Government Level

SO strategies can help distribute traffic flows, reduce delay, and mitigate congestion

Imposing tolls is one of methods to achieve SO at the premise of UE

3/21

Motivation

Figure: Braess Network (d14=6)

UE solution:
h[1,3,4] = h[1,2,4] = h[1,2,3,4] =2
c [1,3,4] = c [1,2,4] = c [1,2,3,4] =92
TSTT = 92*6 = 552

SO solution:
h[1,3,4] = h[1,2,4] = 3, h[1,2,3,4] = 0
c [1,3,4] = c [1,2,4] = 83
TSTT = 498

Toll construction:
One can add tolls of t ′ij(xij) ∗ xij to each link
get SO even people choose routes as per UE.

But can we toll all links in real life?

4/21

Motivation

Literature Review (Hearn et al, 2001)

MINSYS: Minimizing the total non-negative toll revenue collected
MINMAX: Minimizing the largest nonnegative toll collected
MINTB: Minimizing the number of toll booths

Problem Statement
Given a number k, how to identify which k links be tolled at what toll so that the system is closest
to System Optimum in terms of total system travel time

Project Objective
Minimizing total system travel time at equilibrium with only k number of constructed toll stations

Definition: Define Tolled UE as the UE solution when certain links are tolled.

5/21

Motivation

Literature Review (Hearn et al, 2001)

MINSYS: Minimizing the total non-negative toll revenue collected
MINMAX: Minimizing the largest nonnegative toll collected
MINTB: Minimizing the number of toll booths

Problem Statement
Given a number k, how to identify which k links be tolled at what toll so that the system is closest
to System Optimum in terms of total system travel time

Project Objective
Minimizing total system travel time at equilibrium with only k number of constructed toll stations

Definition: Define Tolled UE as the UE solution when certain links are tolled.

5/21

Motivation

Literature Review (Hearn et al, 2001)

MINSYS: Minimizing the total non-negative toll revenue collected
MINMAX: Minimizing the largest nonnegative toll collected
MINTB: Minimizing the number of toll booths

Problem Statement
Given a number k, how to identify which k links be tolled at what toll so that the system is closest
to System Optimum in terms of total system travel time

Project Objective
Minimizing total system travel time at equilibrium with only k number of constructed toll stations

Definition: Define Tolled UE as the UE solution when certain links are tolled.

5/21

Mathematical Formulation

Throughout this presentation, whenever we say “tolls”, we refer to tolls in “time” value.
Formulation: 1

min
∑

(i,j)∈E

xij · tij(xij) (1)

s.t. x ∈ arg min
x∈X

∑
(i,j)∈A

∫ xij

0

(tij(x) + βij)dx (2)

0 ≤ βij ≤ Myij ∀ij ∈ E (3)∑
ij

yij ≤ k (4)

yij ∈ {0, 1} ∀ij ∈ E (5)

This is a bi-level problem with non-convex decision space.

1Equation 1 minimizes TSTT, Constraint 2 promises UE, βij is link toll, yij is dummy binary variable to identify which
link is tolled, M is very large number 6/21

Algorithm

Hence, a heuristic based method is proposed. We need to define three things to develop an algorithm

Convergence Measures

Improvement Direction

Initial Solution

7/21

Algorithm - Convergence Criterion

We already have code for solving traffic assignment, replace the link performance functions t(x)
with t(x) + xt ′(x) and solve UE. This would give the SO solution. Compute the TSTTUE and
TSTTSO .

Define tolled equilibrium by changing link performance functions t(x) with t(x) + β and solve UE.
Call this solution UE Tolled. We want to make TSTTUE Tolled − TSTTSO close to zero.

For a random solution of tolls β, Define Toll Gap (TG) as:

TG =
TSTTUE Tolled − TSTTSO

TSTTUE − TSTTSO

When there is no tolling TG = 1, in best case scenario, TG = 0

8/21

Algorithm - Improving Direction

Sensitivity Analysis: The effect of change of tolls on each link can be found using sensitivity analysis.

Recall that we have derived the sensitivity analysis “formulaes” for changes in link performance
functions.

Compute the link.slope as derivative of the link performance function at current tolled eqm.

Compute link.constant derivative of the link performance function w.r.t the parameter changed.
This is just 1 or 0, based on whether a link is tolled or not. (why?)

Solving the UE with the these linear link performance function and zero demand gives the link
sensitivities as “link flow solution”

9/21

Algorithm - Improving Direction

Sensitivity Analysis: The effect of change of tolls on each link can be found using sensitivity analysis.

Recall that we have derived the sensitivity analysis “formulaes” for changes in link performance
functions.

Compute the link.slope as derivative of the link performance function at current tolled eqm.

Compute link.constant derivative of the link performance function w.r.t the parameter changed.
This is just 1 or 0, based on whether a link is tolled or not. (why?)

Solving the UE with the these linear link performance function and zero demand gives the link
sensitivities as “link flow solution”

9/21

Algorithm - Improving Direction

Sensitivity Analysis: The effect of change of tolls on each link can be found using sensitivity analysis.

Recall that we have derived the sensitivity analysis “formulaes” for changes in link performance
functions.

Compute the link.slope as derivative of the link performance function at current tolled eqm.

Compute link.constant derivative of the link performance function w.r.t the parameter changed.
This is just 1 or 0, based on whether a link is tolled or not. (why?)

Solving the UE with the these linear link performance function and zero demand gives the link
sensitivities as “link flow solution”

9/21

Algorithm - Improving Direction (Contd.)

Now, Given a network, a tolled link and corresponding toll value, find if the “tolling scheme”
improves TSTT:

This is the exact network design problem where there is no cost of building infrastructure!

For a given tolled link (ij) and corresponding toll value (yij) find the link sensitivities

(∂xkℓ∂yij
) on each link.

Use the link sensitivities to compute the grad component using:
∂f
∂yij

=
{∑

(k,ℓ)∈A

(
∂xkℓ
∂yij

tkℓ(xkℓ, ykℓ) + xkℓ
∂tkℓ(xkℓ,ykℓ)

∂xkℓ

)
+ xij

∂tij
∂yij

}
If ∂f

∂yij
≥ 0, this tolling scheme does not improve TSTT

Else: This tolling scheme improves TSTT

Call this algorithm GradComp(ij , yij) that returns the
∂f
∂yij

for a toll yij on link ij .

10/21

Algorithm - Improving Direction (Contd.)

Now, Given a network, a tolled link and corresponding toll value, find if the “tolling scheme”
improves TSTT:

This is the exact network design problem where there is no cost of building infrastructure!

For a given tolled link (ij) and corresponding toll value (yij) find the link sensitivities

(∂xkℓ∂yij
) on each link.

Use the link sensitivities to compute the grad component using:
∂f
∂yij

=
{∑

(k,ℓ)∈A

(
∂xkℓ
∂yij

tkℓ(xkℓ, ykℓ) + xkℓ
∂tkℓ(xkℓ,ykℓ)

∂xkℓ

)
+ xij

∂tij
∂yij

}
If ∂f

∂yij
≥ 0, this tolling scheme does not improve TSTT

Else: This tolling scheme improves TSTT

Call this algorithm GradComp(ij , yij) that returns the
∂f
∂yij

for a toll yij on link ij .

10/21

Algorithm - Improving Direction (Contd.)

Now, Given a network, a tolled link and corresponding toll value, find if the “tolling scheme”
improves TSTT:

This is the exact network design problem where there is no cost of building infrastructure!

For a given tolled link (ij) and corresponding toll value (yij) find the link sensitivities

(∂xkℓ∂yij
) on each link.

Use the link sensitivities to compute the grad component using:
∂f
∂yij

=
{∑

(k,ℓ)∈A

(
∂xkℓ
∂yij

tkℓ(xkℓ, ykℓ) + xkℓ
∂tkℓ(xkℓ,ykℓ)

∂xkℓ

)
+ xij

∂tij
∂yij

}

If ∂f
∂yij

≥ 0, this tolling scheme does not improve TSTT

Else: This tolling scheme improves TSTT

Call this algorithm GradComp(ij , yij) that returns the
∂f
∂yij

for a toll yij on link ij .

10/21

Algorithm - Improving Direction (Contd.)

Now, Given a network, a tolled link and corresponding toll value, find if the “tolling scheme”
improves TSTT:

This is the exact network design problem where there is no cost of building infrastructure!

For a given tolled link (ij) and corresponding toll value (yij) find the link sensitivities

(∂xkℓ∂yij
) on each link.

Use the link sensitivities to compute the grad component using:
∂f
∂yij

=
{∑

(k,ℓ)∈A

(
∂xkℓ
∂yij

tkℓ(xkℓ, ykℓ) + xkℓ
∂tkℓ(xkℓ,ykℓ)

∂xkℓ

)
+ xij

∂tij
∂yij

}
If ∂f

∂yij
≥ 0, this tolling scheme does not improve TSTT

Else: This tolling scheme improves TSTT

Call this algorithm GradComp(ij , yij) that returns the
∂f
∂yij

for a toll yij on link ij .

10/21

Algorithm - Local Search

Algorithm LocalSearch

Set Prospective Links as all links
Set Tolled Set as k random links and Set Toll Values[link] as a toll of 1 unit on these links.
while TG > ϵ do

for each link in Tolled Set do
if GradComp(link, Toll Values[link]) < 0 then

Add a toll randomly uniformly between 0 to U to link (Cumulative)
Solve the Tolled UE
if TG is reduced then

Update Toll Values[link]

else
Remove link from Tolled Set

else
Remove link from Tolled Set

Remove link from Prospective links

If Prospective links = {}, set one of the tolls as 0, and set Prospective Links as all links
Add a new link randomly from Prospective links to Tolled Set

11/21

Example

Initialisation

Tolled Set : [(3, 4), (2, 4)]

Toll Values : {(3, 4): 1, (2, 4): 1}
TSTT = 553.994; TG = 1

Prospective Links: [(1, 2), (1, 3), (2, 3), (3, 4), (2, 4)]

Iteration 1:

Tolled Set : [(3, 4), (2, 4)]

Toll Values : {(3, 4): 1, (2, 4): 1}
Selected link and toll : (3, 4) and 1

Sensitivities: [0.006, -0.006, -0.076 0.0839, -0.0839]

Gradient Component: 0.839 (Positive)

Tolled Set : [(3, 4), (2, 4)]

Prospective Links: [(1, 2), (1, 3), (2, 3), (3, 4), (2, 4)]

Tolled Set : [(2, 4), (2, 3)]

12/21

Example

Initialisation

Tolled Set : [(3, 4), (2, 4)]

Toll Values : {(3, 4): 1, (2, 4): 1}
TSTT = 553.994; TG = 1

Prospective Links: [(1, 2), (1, 3), (2, 3), (3, 4), (2, 4)]

Iteration 1:

Tolled Set : [(3, 4), (2, 4)]

Toll Values : {(3, 4): 1, (2, 4): 1}
Selected link and toll : (3, 4) and 1

Sensitivities: [0.006, -0.006, -0.076 0.0839, -0.0839]

Gradient Component: 0.839 (Positive)

Tolled Set : [(3, 4), (2, 4)]

Prospective Links: [(1, 2), (1, 3), (2, 3), (3, 4), (2, 4)]

Tolled Set : [(2, 4), (2, 3)]
12/21

Example

Iteration 2:

Tolled Set : [(2, 4), (2, 3)]

Toll Values : {(2, 4): 1, (2, 3): 1}
Selected link and toll : (2, 3) and 1

Sensitivities: [-0.07, 0.07, -0.15, 0.076, -0.076]

Gradient Component: -4.30 (Negative)

Add toll to (2,3) : 0.19 (toll becomes 1+0.19)

TG: 0.80

Tolled Set : [(2, 4), (2, 3)]

13/21

Example

Iteration 3:

Tolled Set : [(2, 4), (2, 3)]

Toll Values : {(2, 4): 1, (2, 3): 1.19}
Selected link and toll : (2, 3) and 1.19

Sensitivities: [-0.07, 0.07, -0.15, 0.076, -0.076]

Gradient Component: -4.33 (Negative)

Add toll to (2,3) : 5.67 (toll becomes 1.19+5.67)

TG: 0.31

Tolled Set : [(2, 4), (2, 3)]

Next iteration (2,4) would be selected, at that point prospective links would be empty, the toll for (2,4)
would be set as zero.

14/21

Outline

Results

15/21

Results

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

To
ll

Ga
p

Network - braess (k_input = 2)
UE (with tolls)

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Iterations

510

520

530

540

550

TS
TT

Network - braess (k_input = 2)

UE (with tolls)
UE
SO

Figure: 1 OD Pair, k=2 (Tolled links are {(2,3):7.2 and (2,4):0})

16/21

Results

1 2 3 4 5 6 7 8
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

To
ll

Ga
p

Network - braess2 (k_input = 3)
UE (with tolls)

1 2 3 4 5 6 7 8
Iterations

5770

5780

5790

5800

5810

5820

5830

TS
TT

Network - braess2 (k_input = 3)

UE (with tolls)
UE
SO

Figure: 2 OD Pair, k=3 (Tolls are (4, 6): 32.87, (2, 3): 26.16, (1, 2): 0 ; TG = 0.009)

17/21

Results (Summary)

A maximum run-time of 30s was allowed. 7 out of 9 test cases converged in less than 10s.

Name Nodes Edges OD Pairs k Its. Time TG
Braess 4 5 1 1 7 0.8 < 0.01
Braess 4 5 1 2 4 0.5 < 0.01
Braess 4 5 1 3 4 0.6 < 0.01

New Braess 6 8 1 1 120 30.7 0.17
New Braess 6 8 1 2 9 4.01 < 0.01
New Braess 6 8 1 3 10 6.02 < 0.01
New Braess 6 8 2 1 120 30.7 0.17
New Braess 6 8 2 2 9 4.54 <0.01
New Braess 6 8 2 3 9 5.65 < 0.01

Table: Time: Time in seconds to reach a TG of 0.01

18/21

Summary

We solved the problem of finding k best links in a network to be tolled to reduce total system
travel time. We also found the toll values.

We proposed an optimization program formulation for the problem and showed the problem has
non convex constraint space.

We proposed a simple heuristic that uses sensitivity analysis to find links to be tolled and find the
toll values by slightly increasing the tolls on these links.

We tested the heuristic on small networks and the heuristic converged in less than 10 iterations
(7-8s)

19/21

Future Directions

The tolls are set randomly from a uniform distribution, this can be improved using a
simulated-annealing type technique.

We check links one-by-one even though the effects are not cumulative, this should be addressed.

We currently find the UE solution to the sensitivity problem by finding all possible paths and
solving a system of linear equation, this process is too slow for slightly larger network like
SiouxFalls. Techniques like MSA cant be used, a bush based method should be used.

Given the heuristic nature of the solution, a heuristic to find the sensitivities can be implimented.

20/21

Question

Thank You
Questions?

21/21

